
ELSEVIER

A comparison of schemas for video metadata representation

Jane Hunter a,Ł, Liz Armstrong b,1

a CITEC, 317 Edward Street, Brisbane, QLD. 4001, Australia
b DSTC, Level 7, GP South, University of Queensland, Brisbane, Qld. 4072, Australia

Abstract

To enable the resource discovery of audiovisual documents over the World Wide Web, it will be necessary to
define content description standards or metadata standards for complex, multi-layered, time-dependent information-rich
audiovisual data streams. In particular, this is the primary goal of the emerging MPEG-7 standard, the “Multimedia
Content Description Interface” under development by the MPEG group. In the past, a lot of effort has gone into generating
descriptors and description schemes for video indexing but comparatively little research has been done on schemas
capable of defining the structure, content and semantics of video documents and enabling validation and higher levels
of automated content checking. This paper compares the capabilities of the RDF Schema, Extensible Markup Language
(XML), Document-type Definitions (DTDs), Document Content Description (DCD), and Schema for Object-Oriented
XML (SOX), for supporting and validating hierarchical video descriptions based on Dublin Core, MPEG-7 and a specific
hierarchical structure. Finally, this paper proposes a hybrid schema based on features from each of these schemas which
will satisfy the MPEG-7 Description Definition Language (DDL) requirements. 1999 Published by Elsevier Science
B.V. All rights reserved.

Keywords: Video; Metadata; Schema; Dublin Core; MPEG-7

1. Introduction

To enable the resource discovery of audiovisual
documents over the World Wide Web, it will be
necessary to define content description standards
or metadata standards for complex, multi-layered,
time-dependent information-rich data streams. In
particular, this is the primary goal of the devel-
oping MPEG-7 standard, the “Multimedia Content
Description Interface” [10], under development by
the MPEG group.

A number of papers have considered the applica-
tion of Dublin Core (DC) and the Resource Descrip-

Ł Corresponding author. E-mail: jane@dstc.edu.au
1 liz@dstc.edu.au

tion Framework (RDF) to video indexing [1,7,9,12].
An example of such an application is described
briefly below. However, very little work has been
done on defining schemas which are capable of ac-
tually validating and constraining video descriptions
and their associated data models. Such schemas will
be necessary for the development of cost-efficient,
user-friendly, semi-automatic metadata generation
and editing tools for video. Such a schema would
also provide a solution for the Description Defini-
tion Language (DDL) component of the MPEG-7
requirements.

This paper first briefly presents a video descrip-
tion scheme based on Dublin Core and MPEG-7.
From this description format, a list of schema re-
quirements are generated. It then compares the abil-

 1999 Published by Elsevier Science B.V. All rights reserved.

354

ity of a number of existing schemas and schema
proposals, including the RDF Schema, XML DTDs,
DCD and SOX, to satisfy descriptions of hierarchical
video structures. Examples of schema definitions are
given to illustrate their capabilities.

Finally, this paper proposes a hybrid schema
based on specific features from each of these
schemas and schema proposals which would sat-
isfy the MPEG-7 Description Definition Language
(DDL) requirements.

2. Proposed video description scheme

Dublin Core [5] was designed specifically for
generating metadata to facilitate the resource dis-
covery of textual documents. Although a number of
workshops have been held to discuss the applicabil-
ity of Dublin Core to non-textual documents such as
images, sound and moving images, they have primar-
ily focussed on extensions to the 15 core elements
through the use of sub-elements and schemes spe-
cific to audiovisual data, to describe bibliographic-
type information rather than the actual content.

It has been shown [9] that it is possible to de-
scribe both the structure and fine-grained details of
video content by using the 15 Dublin Core elements
plus qualifiers and encoding this within RDF. This
“pure Dublin Core” approach provides multiple lev-
els of descriptive information. At the top level the
15 basic Dublin Core elements can be used to de-
scribe the bibliographic-type information about the
complete document (e.g. Title, Author, Contributor,
Date, etc.). This enables non-specialist inter-disci-
plinary searching, independent of media type. Ex-
tensions or qualifiers to specific DC elements (Type,
Description, Relation, Coverage) can be applied at
the lower levels (scenes, shots, frames) to provide
fine-grained, discipline- and media-specific search-
ing (e.g. Description.Camera.Angle). The disadvan-
tage of this approach is that the semantic refinement
of Dublin Core through the use of qualifiers eventu-
ally leads to a loss of semantic interoperability.

The alternative is a “hybrid” approach in which
RDF (or some other framework) is used to combine
both simple unqualified Dublin Core and MPEG-7
descriptors within a single description container.
Dublin Core can be used for generic media-inde-

pendent search and retrieval while MPEG-7 can be
used for object-specific fine-grained queries. Our fu-
ture research will compare and evaluate these two
approaches for multimedia resource discovery and
determine the best balance between semantic in-
teroperability, extensibility and modularity. At this
stage, we do not know the specific attributes of
each level, we can only assume that each structural
component will possess both a set of Dublin Core
attributes plus a set of MPEG-7 attributes, as illus-
trated in Fig. 1 below.

For example, if DC.Type D “Image.Moving.
TV.News.Scene” then valid descriptors will include
both the DC simple elements plus MPEG-7 de-
scriptors such as script, transcript, editlist, keyframe,
etc. If DC.Type D “Image.Moving.TV.News.Scene.
Shot” then valid descriptors will include both the
DC elements plus keyframe, camera_distance, cam-
era_angle, camera_motion, opening_transition, clos-
ing_transition. If DC.Type D “Image.Moving.TV.
News.Scene.Shot.Frame” then valid descriptors will
be the DC elements plus colour_histogram.

Fig. 1 shows the logical structure, the structural
components and their associated Dublin Core at-
tributes and some assumed MPEG-7 attributes for
the proposed video description scheme.

3. Video metadata schema requirements

In order to represent the video structure and
Dublin Core descriptors outlined in Fig. 1, a suit-
able schema must be able to support the following.
ž Hierarchical structure definitions. The schema

must be able to constrain the structure to a precise
hierarchy in which complete video documents sit
at the top level. These in turn contain sequences,
which contain scenes, which contain shots, which
contain frames, which contain objects or actors.
Fig. 1 illustrates this hierarchy.
ž Each level (or class) within the hierarchy must be

constrained to possess only specific attributes. In
our description scheme, we assume that each layer
possesses the 15 simple, optional and extensible
DC elements plus a set of class-specific attributes
unique to that layer. These represent the set of
MPEG-7 descriptors for that class when they
become available.

355

Fig. 1. Multi-layered hierarchical structure and attributes of video.

ž Element and attribute inheritance. It should be
possible to specify sub-classing with inheritance
of attributes and elements from the upper to lower
classes. In addition, sub-classes should be able to
have their own additional attributes and elements.
This allows efficient reuse and customization of
document schemas.
ž Data typing. It must be possible to constrain the

values of attributes to certain data types. Data
types supported should include primitive data
types as well as Schemes (e.g. SMPTE), enu-
merated data types, controlled vocabularies, file
types (images), URIs and complex data types

(e.g. colour histograms, 3D vectors, graphs, RGB
values, etc.). It should also be possible to specify
multiple alternative schemes or data types for a
particular attribute.
ž Cardinality within attributes should be repre-

sentable. It must be possible to specify that an
attribute can have zero, one or multiple values.
Ideally the minimum and maximum number of
attributes should also be specifiable, e.g. a scene
must contain between 2 and 5 shots.
ž Spatio–temporal specifications. The schema must

be able to support the specification of temporal
characteristics, e.g. begin and end time of seg-

356

ments and their duration. Similarly, it should be
able to support spatial representation, e.g. regions
within an image or motion along a line.
ž Spatial, temporal and conceptual relations. Spa-

tial relations such as neighbouring objects and
temporal relations such as sequential or parallel
segments should be supported. Given such a re-
lationship between two classes, it should also be
possible to constrain specific attribute values of
these classes. For example, the start and end times
of scenes contained within a sequence, must lie
within the start and end time of that sequence.
ž Human-readability. It is desirable rather than

mandatory that both the schema and the descrip-
tion output from the schema should be human-
readable.
ž Availability of supporting technologies such as

parsers (capable of validating input descriptions),
databases and query languages.
These requirements are similar and compatible

with the DDL requirements listed in section 4.1.1 of
the MPEG-7 Requirements Document [11].

4. Resource description framework (RDF)
schema

The Resource Description Framework (RDF) en-
ables interoperability between applications which ex-
change machine-understandable information on the
Web. A model for representing metadata as well as a
syntax for encoding RDF, based on XML has been
defined in the RDF Model and Syntax Specification
document [13].

RDF is based on a resource and property data
model system. A collection of classes (typically au-
thored for a specific purpose or domain) and the
definition of their properties (attributes) and corre-
sponding semantics represent an RDF schema. A
schema defines not only the properties of the re-
source or class (Title, Author, Subject, Size, Colour,
etc.) but also may define the kinds of resources be-
ing described (books, Webpages, people, companies,

etc.). The details of RDF schemas have been defined
in the RDF Schema Specification document [14].

Classes are organized in a hierarchy, and offer
extensibility through sub-class refinement. This way,
in order to create a schema slightly different from
an existing one, one can just provide incremental
modifications to the base schema. Through the shara-
bility of schemas RDF will support the reusability
of metadata definitions. Due to RDF’s incremental
extensibility, agents processing metadata will be able
to trace the origins of schemes they are unfamiliar
with back to known schemes, and perform mean-
ingful actions on metadata they were not originally
designed to process. The sharability and extensibility
of RDF also allows metadata authors to use multiple
inheritance to “mix” definitions, to provide multiple
views to their data, taking advantage of work done
by others. The XML namespace mechanism serves
to identify different RDF schemas.

RDF schemas can be compared to XML Doc-
ument-type Descriptions (DTDs). Unlike an XML
DTD, which gives specific constraints on the syntac-
tical structure of a document, an RDF schema pro-
vides semantical information about the interpretation
of the statements given in an RDF data model. Given
its goals, RDF appears to be the ideal approach
for supporting descriptors from multiple description
schemes simultaneously, as required by the MPEG-7
DDL.

4.1. Example of a suitable RDF schema

This section describes an RDF schema definition
that attempts to map to the diagram in Fig. 1 and to
support the requirements listed above.

Since we want the DC simple attributes to be
applicable to every component or layer, videos, se-
quences, scenes, shots, frames and objects are all
sub-classes of a top level document class which
possesses the DC attributes. In addition, each sub-
class has its own additional descriptive properties or
attributes which will correspond to MPEG-7 descrip-
tors when they become available.

<rdf: RDF
xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"
xmlns:rdfs= "http://www.w3.org/TR/WD-rdf-schema#"
xmlns:dc= "http://purl.org/metadata/dublin_core#">

357

<rdfs:Class ID="MM_document">
<rdfs:comment>Class for representing a generic multimedia
document</rdfs:comment>
</rdfs:Class>

<rdfs:comment>Define all of the DC elements for MM_document </rdfs:comment>

<rdf:PropertyType ID="Title">
<rdfs:comment>This is the DC Title element </rdfs:comment>
<rdfs:domain rdf:resource="#MM_document">
<rdfs:range rdf:resource="http://purl.org/metadata/dublin_core#Title"/>
</rdf:PropertyType>

<rdf:PropertyType ID="Creator">
<rdfs:comment>This is the DC Creator element </rdfs:comment>
<rdfs:domain rdf:resource="#MM_document">
<rdfs:range rdf:resource="http://purl.org/metadata/dublin_core#Creator"/>
</rdf:PropertyType>
.
etc.
.

<rdfs:Class ID="Video">
<rdfs:comment>Class for representing a video document. It is a subclass

of MM_document</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MM_document"/>
</rdfs:Class>

<rdfs:Class ID="Sequence">
<rdfs:comment>Class for representing a sequence from a video document. It is

a subclass of MM_document</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MM_document"/>
</rdfs:Class>

<rdfs:Class ID="Scene">
<rdfs:comment>Class for representing a scene. It is a subclass of

MM_document</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MM_document"/>
</rdfs:Class>

<rdfs:Class ID="Shot">
<rdfs:comment> Class representing a shot</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MM_document"/>
</rdfs:Class>

<rdfs:Class ID="Frame">
<rdfs:comment> Represents a single frame. It is a subclass of

#MM_document</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MM_document"/>
</rdfs:Class>

<rdfs:Class ID="Object">

358

<rdfs:comment> Represents an object within a frame. It is a subclass of
#MM_document</rdfs:comment>

<rdfs:subClassOf rdf:resource="#MM_document"/>
</rdfs:Class>

One of the problems with RDF is to create a
generic property such as contains by which the hier-
archical structure can be defined, i.e. videos contain
sequences which contain shots which contain frames
which contain objects and actors. If you create a
property contains for #video then how do you also
apply it to #sequence, #scene and #shot? Since each
property requires a single range, then generic rela-
tionships such as contains cannot be used. Instead, a

separate property must be defined for each domain–
range pair. This is tedious and repetitive. The lack
of class-specific constraints on domain and range of
properties is a major limitation of RDF, particularly
when applied to complex multi-layered documents
in which you want to specify constraints on struc-
tural, spatial, temporal and conceptual relationships
between components.

<rdf:PropertyType ID="contains_sequences">
<rdfs:comment> Property related to a video asset stating that a video consists

of a number of sequences. </rdfs:comment>
<rdfs:domain rdf:resource="#Video">
<rdfs:range rdf: resource="#Sequence">
</rdfs:PropertyType>

<rdf:PropertyType ID="contains_scenes">
<rdfs:comment> Property related to a sequence asset stating that a sequence

consists of a number of scenes. </rdfs:comment>
<rdfs:domain rdf:resource="#Sequence">
<rdfs:range rdf: resource="#Scene">
</rdfs:PropertyType>

<rdf:PropertyType ID="contains_shots">
<rdfs:comment> Property related to a scene asset stating that a scene consists

of a number of shots. </rdfs:comment>
<rdfs:domain rdf:resource="#Scene">
<rdfs:range rdf: resource="#Shot">
</rdfs:PropertyType>

<rdf:PropertyType ID="contains_frames">
<rdfs:comment> Property related to a shot asset stating that a shot consists

of a number of frames. </rdfs:comment>
<rdfs:domain rdf:resource="#Shot">
<rdfs:range rdf: resource="#Frame">
</rdfs:PropertyType>

<rdf:PropertyType ID="contains_objects">
<rdfs:comment> Property related to a frame asset stating that a frame consists

of a number of objects. </rdfs:comment>
<rdfs:domain rdf:resource="#Frame">
<rdfs:range rdf: resource="#Object">
</rdfs:PropertyType>

359

Another problem is the limited data typing within
RDF. There are three ways of specifying data types
within RDF.
ž Use the primitive Literal data type available

within the RDF Schema definition. This is any
quoted string.
ž Implement a kind of enumerated data type by

defining the range to be a class with a number
of predefined instance values. This is used in the
example below to define the possible values for
shot transitions.

ž Point to a separate namespace in which the data
types have been defined. In the example below
we refer to “http://www.w3.org/TR/datatypes” for
any data types other than literal. This namespace
does not currently exist but it is intended to de-
fine this within the W3C XML Schema Working
Group [20] which has recently been set up.
Below is an example of the RDF Schema code

defining some of the scene, shot, frame and object
properties. It illustrates the three data typing methods
available.

<rdf:PropertyType ID="startTime">
<rdfs:domain rdf:resource="#Scene">
<rdfs:domain rdf:resource="#Shot">
<rdfs:range rdf:resource="http://www.w3.org/TR/datatypes#Time"/>
</rdf:PropertyType>

<rdfs:PropertyType ID="keyFrame">
<rdfs:domain rdf:resource="#Scene">
<rdfs:domain rdf:resource="#Shot">
<rdfs:range rdf:resource="http://www.w3.org/TR/datatypes#Image"/>
</rdfs:PropertyType>

<rdfs:PropertyType ID="openTrans">
<rdfs:domain rdf:resource="#Shot">
<rdfs:range rdf:resource="#Transitions">
</rdfs:PropertyType>

<rdfs:PropertyType ID="closeTrans">
<rdfs:domain rdf:resource="#Shot">
<rdfs:range rdf:resource="#Transitions">
</rdfs:PropertyType>

<rdfs:Class ID="Transitions"/>
<Transitions ID="Cut"/>
<Transitions ID="Fade"/>
<Transitions ID="Wipe"/>
<Transitions ID="Dissolve"/>

<rdfs:PropertyType ID="position">
<rdfs:domain rdf:resource="#Object">
<rdfs:range rdf:resource="http://www.w3.org/TR/datatypes#Point">
</rdfs:PropertyType>

<rdfs:PropertyType ID="shape">
<rdfs:domain rdf:resource="#Object">
<rdfs:range rdf:resource="http://www.w3.org/TR/datatypes#Polygon">
</rdfs:PropertyType>

<rdfs:PropertyType ID="colourHistogram ">

360

<rdfs:domain rdf:resource="#Frame">
<rdfs:domain rdf:resource="#Object">
<rdfs:range rdf:resource="http://www.w3.org/TR/datatypes#Histogram">
</rdfs:PropertyType>

4.2. Advantages of RDF Schema for video metadata

RDF schemas, within the context of this applica-
tion, have the following advantages.
ž RDF Schema is able to provide meanings to el-

ements or semantic structure not possible using
purely syntactic schemas such as XML DTDs.
However, the sorts of machine-understandable
meanings provided in the current version of RDF
Schema are very limited — so the advantage of
“semantic validation” is virtually negligible.
ž The other schemas really only provide implicit

child or contains relationships between elements.
With RDF you can specify any relationship types
explicitly through properties but this is limited by
the need to specify a single range. It is not possi-
ble to constrain a particular relationship to multi-
ple range–domain pairs, e.g. sequences can only
contains scenes which can only contain shots, etc.
ž Multiple namespaces. This enables the same fea-

ture to have different descriptors which cor-
respond to different domains or description
schemes. The ability to mix classification vocab-
ularies within one XML-based encoding allows
video authors or others to deliver richer domain-
specific content descriptions thus increasing the
re-usability of the video on the Web. This is a key
requirement of the MPEG-7 DDL.
ž Inheritance is supported through sub-classes and

sub-properties. This provides easy extensibility
and reuse of code.
ž A simple RDF parser (SiRPAC [15]) exists but it

has limited validation capabilities, checking only
that the domain and range constraints are satisfied.
ž It is human-readable, simple to understand and

thus simple to extend or customize.

4.3. Limitations of RDF Schema for video metadata

RDF Schema has the following problems or limi-
tations.
ž Unstable. The RDF Schema specifications are still

under development and change frequently.

ž Limited or no data typing. Almost all data typing
will need to be provided by external namespaces,
which do not yet exist.
ž No cardinality. It is not possible to specify op-

tional, zero or multiple values for an attribute.
ž Range constraints such as minimum and maxi-

mum values are not supported.
ž Class-specific range constraints are not possible.

Only one range is possible for a given property.
The only way to provide multiple ranges is to
create multiple properties, e.g. secs_start_time,
frame_start_time, SMPTE_start_time.
ž RDF Schema cannot describe multi-layered struc-

tures using a single generic “contains” property.
This requires multiple-specific “contains” proper-
ties, i.e. “contains_sequences”, “contains_scenes”,
“contains_shots”, “contains_frames”. The alterna-
tive is to implement codes outside of the schema
which understands DC.Relation.HasParts seman-
tics and can perform the validation.
ž Property-centricity makes readability difficult.

The link between properties and classes is de-
fined within the property definitions not the class
definitions.
ž No query language exists for RDF. Given a video

structure, to find videos with similar structures,
you need to be able to store RDF structures in a
directed graph with associated attribute values in
a database.
ž The simplest way to specify spatial and tempo-

ral relationships is via the Collection elements:
Seq, Bag and Alt, but these provide limited se-
mantics. Since no <Par> element exists within
RDF, the <Bag> element must be used to spec-
ify parallelism. For spatial relationships such as
neighbours, if the list of neighbours is in a col-
lection, can we assume that the first one is the
nearest neighbour?
ž Cannot map relationship-type properties between

classes to constraints on the attribute values of the
classes involved. For example, if two scenes abut
then their respective end and start frame numbers
must be consecutive. If a sequence “contains” a

361

scene, then the start and end times of the scene,
must lie within the start and end times of the
sequence. This is not supported by RDF Schema.
ž RDF Schema is an incomplete mapping of the

RDF Syntax and Data model. There are very use-
ful features available within the RDF Syntax and
Data Model Spec. which are not supported in the
RDF Schema.

5. XML DTDs

Extensible Markup Language (XML) Document-
Type Definitions (DTDs) provide a sub-set of SGML
for describing documents. XML was developed by
the XML Working Group under the World Wide Web
Consortium (W3C) in 1996. The complete XML
spec. is available from the W3C. [6].

Each XML document has both a logical and a
physical structure. Physically, the document is com-
posed of units called entities. An entity may refer
to other entities to cause their inclusion in the doc-
ument. A document begins in a “root” or document
entity. Logically, the document is composed of dec-
larations, elements, comments, character references,
and processing instructions, all of which are in-
dicated in the document by explicit markup. The
logical and physical structures must nest properly.

The function of the markup in an XML document
is to describe its storage and logical structure and to
associate attribute–value pairs with its logical struc-
tures. XML provides the document-type declaration,
to define constraints on the logical structure and to
support the use of predefined storage units. An XML
document is valid if it has an associated document-
type declaration and if the document complies with
the constraints expressed in it. Document-type dec-
larations are made in a Document-Type Definition
(DTD) file. The DTD file then contains a formal def-
inition of a particular type of document outlining the
element names and the structure of the document.

5.1. An example of an XML DTD for video documents

The structure is defined in the element definitions
at the top of the DTD. Each element has a set of as-
sociated attributes. All elements have an ID attribute
plus the DC attributes. In addition, sequences, scenes

and shots also have a set of time attributes (begin,
end, duration). Each element also has its own set of
level-specific attributes (which will correspond to the
MPEG-7 descriptors when they become available).

<?xml version="1.0"?>

<!DOCTYPE videodoc [

<!- hierarchical structure of videodoc -!>
<!ELEMENT videodoc (sequence*)>
<!ELEMENT sequence (scene*)>
<!ELEMENT scene (shot*)>
<!ELEMENT shot (frame*)>
<!ELEMENT frame(object*)>
<!ELEMENT object(object*)>

<!- ID attribute for every element -!>
<!ENTITY % id_attr "id ID #IMPLIED">

<!- Set of Dublin Core Attributes -!>
<!ENTITY % dc_attr "

Title CDATA #IMPLIED
Creator CDATA #IMPLIED
Subject CDATA #IMPLIED
Description CDATA #IMPLIED
Publisher CDATA #IMPLIED
Contributor CDATA #IMPLIED
Date CDATA #IMPLIED
Type CDATA #IMPLIED
Format CDATA #IMPLIED
Identifier CDATA #IMPLIED
Source CDATA #IMPLIED
Language CDATA #IMPLIED
Relation CDATA #IMPLIED
Coverage CDATA #IMPLIED
Rights CDATA #IMPLIED">

<!ENTITY % scene_attr "
Transcript CDATA #IMPLIED
Script CDATA #IMPLIED
EditList CDATA #IMPLIED
Keyframe CDATA #IMPLIED
Locale CDATA #IMPLIED
Cast CDATA #IMPLIED
Objects CDATA #IMPLIED">

<!ENTITY % shot_attr "
Keyframe CDATA #IMPLIED
CameraDist NMTOKEN #IMPLIED
CameraAngle NMTOKEN #IMPLIED

362

CameraMotion NMTOKEN #IMPLIED
Lighting NMTOKEN #IMPLIED
OpenTrans NMTOKEN #IMPLIED
CloseTrans NMTOKEN #IMPLIED">

<!ENTITY % frame_attr "
Image CDATA #IMPLIED
Timestamp CDATA #IMPLIED
ColourText NMTOKEN #IMPLIED
ColourHistogram CDATA #IMPLIED
Texture CDATA #IMPLIED
Annotation CDATA #IMPLIED
Anno_Position CDATA #IMPLIED">

<!ENTITY % object_attr "
Position CDATA #IMPLIED
Shape CDATA #IMPLIED
Trajectory CDATA #IMPLIED
Speed CDATA #IMPLIED
ColourText NMTOKEN #IMPLIED
ColourHistogram CDATA #IMPLIED
Texture CDATA #IMPLIED
Volume CDATA #IMPLIED
Annotation CDATA #IMPLIED
Anno_position CDATA #IMPLIED">

<!ENTITY % time_attr "
begin CDATA #IMPLIED
end CDATA #IMPLIED">
dur CDATA #IMPLIED">

<!ATTLIST videodoc
%id_attr;
%dc_attr;>

<!ATTLIST sequence
%id_attr;
%dc_attr;
%time_attr;>

<!ATTLIST scene
%id_attr;
%dc_attr;
%scene_attr;
%time_attr;>

<!ATTLIST shot
%id_attr;
%dc_attr;
%shot_attr;
%time_attr;>

<!ATTLIST frame
%id_attr;
%dc_attr;
%frame_attr;>

<!ATTLIST object
%id_attr;
%dc_attr;
%object_attr;>

]>

5.2. Advantages of XML DTDs for video metadata

ž Work is progressing on a query language for
XML, e.g. XML-QL [3].
ž XML parsers exist.
ž Simplicity associated with a single namespace.

Users only have to understand one namespace.
ž XML is simpler than SGML, HyTime, etc.
ž XML DTDs are easy to read and understand.

Short and sweet without all that data typing.
ž Hierarchical structures are supported but only on

a syntactical basis.

5.3. Disadvantages of XML DTDs for video metadata

ž No name spaces. Since name spaces are not sup-
ported, definitions such as Dublin Core attributes
will need to be redefined unless external entities
are used. External entities provide a similar ca-
pability to namespaces. An external entity can be
retrieved from an external DTD via a URI to this
DTD and the entity’s ID.
ž Cardinality of attributes is zero or one in XML

DTDs. This creates problems with DC attributes
which are optional and repeatable. They may need
to be declared as elements.
ž There is very limited support for data typing.

Only three kinds of attribute types are supported:
a string type, a set of tokenized types and enu-
merated types. However, Bray [2] has shown that
it is possible to attach strong type declarations to
XML elements using reserved attributes.
ž It is a purely “syntactic” machine-understandable

schema which cannot provide any of the seman-
tics associated with complex structured multime-
dia data or support object-oriented data modelling
concepts.

363

ž There is no inheritance.
ž There are no relationships possible other than the

implicit contains.

6. Document content description (DCD) for XML

The Document Content Description (DCD) [4] fa-
cility for XML is an RDF vocabulary designed for
describing constraints to be applied to the structure
and content of XML documents. It consists of a set
of properties used to constrain the types of elements
and names of attributes that may appear in an XML
document, the contents of the elements and the values
of the attributes. It was designed to provide semantics
over and above the purely syntactical XML DTDs.
It was also designed to be conformant with the RDF
Model and Syntax Specification (with some simplifi-
cations). DCD also incorporates a sub-set of an earlier
submission to W3C, the XML-Data Submission [17].

The introduction to the XML-Data Submission
says that it “describes an XML vocabulary for
schemas, that is, for defining and documenting object
classes. It can be used for classes which are strictly
syntactic (for example, XML) or those which indicate
concepts and relations among concepts (as used in re-
lational databases, KR graphs and RDF). The former

are called ‘syntactic schemas’; the latter ‘conceptual
schemas’.” Thus, XML-Data and DCD add object-
oriented and data modelling concepts such as class
inheritance to purely syntactic schemas such as XML
DTDs.

DCD Schemas are based on elements and at-
tributes. Elements correspond to RDF property
types. DCD declarations constrain the content and
attributes of elements in document instances, by as-
signing properties to objects of type ElementDef and
AttributeDef.

6.1. Example of a DCD schema

The DCD Schema below is based on the follow-
ing assumptions:
ž the Dublin Core elements are all described in a

separate name space;
ž the root element video_doc contains video_se-

quences which contains video_scenes, etc.;
ž the Dublin Core elements apply to every level;
ž in addition, the sequence, scene and shot ele-

ments possess start_time, end_time and duration
elements;
ž in addition, each level has its own unique

elements=attributes corresponding to MPEG-7 de-
scriptors.

<DCD
xmlns:DC="http://purl.org/metadata/dublin_core#"
xmlns:CDT="http://www.w3.org/TR/complex_datatypes#">

<?DCD syntax="explicit"?>

<Description>Example of a Video Document DCD</Description>
<Namespace>http://www.dstc.edu.au/schemas/videodcd</Namespace>

<ElementDef Type="videodoc" Model="Elements" Root="True">
<Description>A video document structure.</Description>
<Group RDF:Order="Seq">

<Element>dc_values</Element>
<Group Occurs="ZeroOrMore" RDF:Order="Seq">

<Element>sequence</Element>
</Group>

</ElementDef>

<ElementDef Type="sequence" Model="Elements">
<Description>Description of a video sequence element</Description>
<AttributeDef Name="seqID" Occurs="Required"/>
<Group RDF:Order="Seq">

364

<Element>dc_values</Element>
<Element>time_attribs</Element>
<Group Occurs="ZeroOrMore" RDF:Order="Seq">

<Element>scene</Element>
</Group>

</Group>
</ElementDef>

<ElementDef Type="scene" Model="Elements">
<Description>Description of a video scene element</Description>
<AttributeDef Name="sceneID" Occurs="Required"/>
<Group RDF:Order="Seq">

<Element>dc_values</Element>
<Element>time_attribs</Element>
<Element>transcript</Element>
<Element>keyframe</Element>
<Group Occurs="ZeroOrMore" RDF:Order="Seq">

<Element>shot</Element>
</Group>

</Group>
</ElementDef>

<ElementDef Type="shot" Model="Elements">
<Description>Description of a video shot element</Description>
<AttributeDef Name="shotID" Occurs="Required"/>
<Group RDF:Order="Seq">

<Element>dc_values</Element>
<Element>time_attribs</Element>
<Element>camera_distance</Element>
<Element>camera_angle</Element>
<Element>camera_motion</Element>
<Element>lighting</Element>
<Element>open_transition</Element>
<Element>close_transition</Element>
<Group Occurs="ZeroOrMore" RDF:Order="Seq">

<Element>frame</Element>
</Group>

</Group>
</ElementDef>

<ElementDef Type="frame" Model="Elements">
<Description>Description of a video frame element</Description>
<AttributeDef Name="frameID" Occurs="Required"/>
<Group RDF:Order="Seq">

<Element>dc_values</Element>
<Element>timestamp</Element>
<Element>CDT:colourhistogram</Element>
<Element>CDT:texture</Element>
<Element>annotation</Element>

365

<Element>CDT:anno_position</Element>
<Group Occurs="ZeroOrMore" RDF:Order="Seq">

<Element>object</Element>
</Group>

</Group>
</ElementDef>

<ElementDef Type="object" Model="Elements">
<Description>Description of a video object/actor element</Description>
<Attributedef Name="objectID" Occurs="Required"/>
<Group RDF:Order="Seq">

<Element>dc_values</Element>
<Element>CDT:position</Element>
<Element>CDT:shape</Element>
<Element>CDT:colourhistogram</Element>
<Element>CDT:texture</Element>
<Element>CDT:trajectory</Element>
<Element>annotation</Element>
<Element>CDT:anno_position</Element>
<Group Occurs="ZeroOrMore" RDF:Order="Seq">

<Element>object</Element>
</Group>

</Group>
</ElementDef>

<ElementDef Type="dc_values" Model="Elements">
<Description>List of Dublin Core Elements</Description>
<Group RDF:Order="Seq">

<Element>DC:Title</Element>
<Element>DC:Creator</Element>
<Element>DC:Subject</Element>
......

</Group>
</ElementDef>

<ElementDef Type="time_attribs" Model="Element">
<Group RDF:Order="Seq">

<Element>start_time</Element>
<Element>end_time</Element>
<Element>duration</Element>
......

</Group>
</ElementDef>

<ElementDef Type="transcript" Model="Data" Datatype="string">
</ElementDef>
<ElementDef Type="keyframe" Model="Data" Datatype="uri">
</ElementDef>

<ElementDef Type="camera_distance" Model="Data" Datatype="enumeration">

366

<Values>close-up medium-shot long-shot</Values>
</ElementDef>

<ElementDef Type="camera_angle" Model="Data" Datatype="enumeration">
<Values>low eye-level high</Values>

</ElementDef>

<ElementDef Type="open_transition" Model="Data" Datatype="enumeration">
<Values>cut fade wipe dissolve</Values>

</ElementDef>

<ElementDef Type="annotation" Model="Data" Datatype="string">
</ElementDef>

</DCD>

6.2. Advantages of DCD for video metadata

ž Human-readable and simple.
ž Provides better data typing than RDF Schemas

and XML DTDs (but still only basic). Also pro-
vides upper and lower bound constraints on at-
tribute values.
ž Provides cardinality.
ž Supports multiple namespaces.
ž As an RDF vocabulary, it inherits the advantages

of the data modelling concepts in RDF, plus con-
structs such as RDF:Seq and RDF:Alt.

6.3. Disadvantages of DCD for video metadata

ž Currently no sub-classing or inheritance but this
is planned for the future. The proposal is to cre-
ate sub-classes from existing elements through an
extends property.
ž Only basic data typing is supported, not complex

data types. There is no support for multiple al-
ternate data types, except if you create alternate
elements with different data types, e.g. start_time
value can be SMPTE, secs, frames(int). Also there
is no support for constraining the values of certain
attributes of related elements.
ž Does not support data types such as points, lines,

polygons, colour histograms, etc. These would all
have to be described in a separate namespace, e.g.
“http://www.w3.org/TR/complex_datatypes”. It is
not possible to specify that just the element’s data
type is to be a value from another namespace. You
need to specify that the element itself is totally
described in another namespace.

ž Only Seq and or Alt Groups are available. Bag
is not a legal value for the RDF:Order property.
Seq is fine for specifying sequential components
but for multimedia, there is also a need to support
groups of elements which run in parallel. The
RDF Bag element is the most suitable for specify-
ing this (in the absence of any Par value), but it is
not supported in DCD.

7. Schema for object-oriented XML (SOX)

Schema for Object-Oriented XML (SOX) [16]
provides a facility for defining the structure, content
and semantics of XML documents to enable XML
validation and automated content checking.

SOX provides an alternative to XML DTDs for
modelling markup relationships. The introduction to
the SOX specification says that it provides the fol-
lowing advantages over XML DTDs:
ž more efficient software development processes for

distributed applications;
ž basic intrinsic data types;
ž an extensible data typing mechanism;
ž content model and attribute interface inheritance;
ž a powerful namespace mechanism;
ž embedded documentation.

SOX supports three varieties of data types:
scalar datatypes, enumerated datatypes and format
datatypes. Scalar data types are derived from the
basic number data type, and support specification of
the number of digits and decimal places, minimum
and maximum value range, and a mask. An enu-
merated data type may be derived from any of the

367

intrinsic data types, and may specify an enumeration
of valid values. A format data type may be derived
from any of the intrinsic data types, and must specify
a mask.

In SOX, element types may inherit their content
models and attribute definitions directly from an-
other named element type. An element type may
also inherit and extend an attribute list. Specializa-
tion of attribute definitions allows refinement and
restriction of attribute data type, enumeration list and
default value. Additionally, an attribute value may be
defined to be inherited from the identically named
attribute on a parent or older ancestor element. Thus,
for example, namespaces can be inherited from su-
perordinate elements.

The SOX namespace facility enables Objects
from any identifiable namespace to be used in build-
ing a SOX document. That is, any element, attribute,

data type, enumeration, entity, interface, notation,
parameter, or processing instruction may be im-
ported from any namespace.

A SOX document is a valid XML document, ac-
cording to the SOX DTD. The schema designer is free
to employ the same XML tools used for traditional
XML documents. This means that a SOX document
can processed by a validating XML parser, formatted
according to an XSL stylesheet, and managed by any
DOM-compliant or SAX-compliant application.

7.1. SOX example

In this example, the structural elements, vid-
eo_doc, video_sequence, video_scene, video_shot,
video_frame and video_object are declared first. They
each possess the DC attributes, plus their own specific
elements and attributes.

<schema name="video_doc"
namespace="http://www.dstc.edu.au/schemas/video_doc.xml">

<h1>Video Metadata Document</h1>

<h2>Imported namespaces</h2>

<namespace name="dc" namespace="http://purl.org/metadata/dublin_core#"/>
<namespace name="dcq"
namespace="http://purl.org/metadata/dublin_core_qualifiers#"/>

<h2>Structural Elements</h2>

<elementtype name="video_doc">
<model>

<sequence>
<element name="dc_attributes"/>
<element name="video_sequence" occurs="*"/>

</sequence>
</model>

</elementtype>

<elementtype name="video_sequence">
<model>

<sequence>
<element name="seqID"/>
<element name="dc_attributes"/>
<element name="time_attributes"/>
<element name="video_scene" occurs="*"/>

</sequence>
</model>

</elementtype>

368

<elementtype name="video_scene">
<model>

<sequence>
<element name="sceneID"/>
<element name="dc_attributes"/>
<element name="time_attributes"/>
<element name="transcript"/>
<element name="key_frame"/>
<element name="video_shot" occurs="*"/>

</sequence>
</model>

</elementtype>

<elementtype name="video_shot">
<model>

<sequence>
<element name="shotID"/>
<element name="dc_attributes"/>
<element name="time_attributes"/>
<element name="camera_distance"/>
<element name="camera_angle"/>
<element name="camera_motion"/>
<element name="lighting"/>
<element name="open_trans"/>
<element name="close_trans"/>
<element name="video_frame" occurs="*"/>

</sequence>
</model>

</elementtype>

<elementtype name="video_frame">
<model>

<sequence>
<element name="frameID"/>
<element name="dc_attributes"/>
<element name="timestamp"/>
<element name="colour_histogram"/>
<element name="texture"/>
<element name="video_object" occurs="*/>

</sequence>
</model>

</elementtype>

<elementtype name="video_object">
<model>

<sequence>
<element name="objectID"/>
<element name="dc_attributes"/>
<element name="position"/>

369

<element name="shape"/>
<element name="colour"/>
<element name="texture"/>
<element name="anno_text"/>
<element name="anno_posn"/>
<element name="video_object" occurs="*"/>

</sequence>
</model>

</elementtype>

The next step is to break down the elements
to sub-elements and eventually data types. SOX
supports both intrinsic basic data types as well as
user-defined scalar, enumeration and formatted data

types, derived from the intrinsic data types. The code
below illustrates some of the capabilities of SOX
data typing for video description.

<h2>Attribute Elements</h2>

<elementtype name="dc_attributes">
<model>

<sequence>
<element namespace="dc" name="Title"/>
<element namespace="dc" name="Creator"/>
<element namespace="dc" name="Subject"/>
.....

</sequence>
</model>

</elementtype>

<elementtype name="time_attributes">
<model>

<sequence>
<element name="start_time"/>
<element name="end_time"/>
<element name="duration"/>

</sequence>
</model>

</elementtype>

<elementtype name="start_time">
<instanceof name="time_val"/>

</elementtype>

<elementtype name="end_time">
<instanceof name="time_val"/>

</elementtype>

<elementtype name="duration">
<instanceof name="time_val"/>

</elementtype>

<elementtype name="time_val">
<model>

370

<choice occurs=1>
<element name="frame_num"/>
<element name="SMPTE"/>
<element name="abs_time"/>

</choice>
</model>

</elementtype>
<elementtype name="frame_num">

<model>
<string datatype="frame"/>

</model>
</elementtype>

<datatype name="frame">
<scalar datatype="int" min="1" max="25"/>

</datatype>

<elementtype name="smpte">
<model>

<string>
<mask>##:##:##;##</mask>

</string>
</model>

</elementtype>

<elementtype name="abs_time">
<model>

<string datatype="time"/>
</model>

</elementtype>

<elementtype name="key_frame">
<model>

<string datatype="URI"/>
</model>

</elementtype>
<elementtype name="camera_dist">

<model>
<string datatype="camera_distances"/>

</model>
</elementtype>

<datatype name="camera_distances">
<enumeration datatype="nmtoken">

<option>close-up</option>
<option>medium-shot</option>
<option>long-shot</option>

</enumeration>

</datatype>

</schema>

371

7.2. Advantages of SOX for video metadata

ž XML query languages, when available, will work
on SOX documents.
ž XML parsers will work on SOX documents. In

order to perform complete validation of SOX-
specific constraints, extra parsing code will be
required.
ž Provides much better data typing capabilities than

the other schemas — scalar, enumerated and for-
matted data types.
ž SOX provides the best cardinality with “occurs

n,m”.
ž Inheritance provides the possibility for reuse of

code, elements and data-type definitions. Ele-
ments can inherit their definitions from existing
elements (using instanceof) and also extend with
new attributes (using extends).

7.3. Disadvantages of SOX for video metadata

ž SOX was designed for validating business docu-
ments in e-commerce applications. Consequently,
it is more suitable for validating static forms
than complex multimedia structures. It is ele-
ment-focussed rather than entity-focussed.
ž It only provides the implicit “contains” relation-

ship. Structural constraints would require multiple
“contains” elements.
ž Inheritance is possible but users can only extend

elements with new attributes. Ideally one should
be able to extend elements with both new at-
tributes and new elements.
ž Not an RDF vocabulary.

8. Conclusions: the ultimate schema

None of the above schemas is ideal for describ-
ing complex multimedia documents. They all satisfy
some of the requirements but fall down in other
areas. None of them is designed for describing com-
plex hierarchical structures in which there are spatial,
temporal, structural and conceptual relationships be-
tween the components and where these relationships
map to constraints on the relative attribute values of
the related components. For example, spatial rela-
tionships such as neighbours, in-front-of, behind,

overlapping and surrounds correspond to certain
constraints on the values of the shape, location or
volume attributes of the related objects. Similarly,
temporal relationships such as contains, sequential,
parallel and overlapping should be mapped to con-
straints on the start time, end time and duration of
the components. None of the schemas support these
capabilities.

RDF Schema claims to differ from the other
schemas, in that it is not a “syntactic” schema but a
“semantic schema”. However, the sorts of machine-
understandable meanings provided in the current
version of RDF Schema is very limited. So the ad-
vantage of “semantic validation” is negligible. RDF
Schema is good at containing and combining de-
scriptors from different name spaces=communities
but it has virtually no data typing. Data types must
be defined in a separate name space. This has yet to
be done but the work is intended to be done within
the W3C XML Schema Working Group [20] which
has recently been set up. RDF Schemas also do not
easily support multi-layered hierarchical structures
because of the inability to specify generic relation-
ship types using properties and to apply these across
multiple domain–range pairs. So although RDF is
better than the other schemas because of its abil-
ity to specify relationships other than the implicit
child or contains relationship (which is the only one
that the other schemas offer), this facility is limited
to a specific range and domain due to the lack of
“class-specific constraints”.

XML DTDs offer simplicity and fast, cost-effec-
tive development due to the ready availability of
parsers, tools and applications. However, as a data
modelling language, they have limited semantics,
which XML-Data, DCD and SOX schemas try to
expand by adding things such as strong data typing
and lexical constraints.

DCD is an improvement on XML DTDs because
it provides better data typing and also provides addi-
tional semantics via its RDF conformity. However, it
does not currently support inheritance, although this
is a future goal.

SOX has the best data typing. It is also XML
compliant so that XML parsers and XML-QL (when
it becomes available) will work on it. It supports
inheritance but with attribute extension only, not ele-
ment extension. It is not RDF-conformant. SOX also

372

provides the best cardinality, enabling the minimum
(other than 0 or 1) and maximum number of children
of an element to be specified, e.g. maximum of 10
shots per scene. DCD and XML DTDs can only
specify zero or more or one or more children. RDF
Schema does not support cardinality.

An additional desirable schema feature would
be the ability to define equivalence relationships be-
tween attributes and define constraints based on these
relationships. For example, suppose there are two
attributes, ColourText and ColourHistogram. Then
in an ideal schema, users would be able to de-
fine an enumerated data type for ColourText (red,
yellow, green, blue, etc.) and for each of these pos-
sible values, a corresponding permissable range of
ColourHistograms would be defined. An even more
complex example is the mapping of a textual descrip-
tion attribute to some combination of shape, colour
and texture attribute value ranges. Such a schema
could then be used to both validate the integrity of
the input data but also automatically generate meta-
data where it is not provided. This ability to map
from high-level features (such as text) to low level
features (colour, shape, texture) is one of the require-
ments of the MPEG-7 DDL. It would also greatly
improve the searchability of complex multimedia
archives. None of the schemas examined provide
such sophisticated capabilities.

Other relevant schemas not covered in this pa-
per include: the XSchema specification [19] and
XML-Data [17]. XSchema is very similar to SOX.
Formerly known as XSD, XSchema began as a pro-
posal for the representation of XML DTDs as XML
documents. The advantages of using XML document
syntax to describe XML document structures include
the ability to browse and edit XSchemas using XML-
aware tools. This cannot be done on DTDs which are
not pure XML documents. Although XML-Data has
some very useful features, it appears to have been
superseded by DCD.

8.1. The ideal schema for multimedia

Based on the above analysis and comparisons,
the best solution for video metadata representation is
one which provides the object-oriented, semantical
concepts of RDF but expresses them within an eas-
ily-understood, human-readable XML schema. We

have proposed such a XML schema for the MPEG-7
DDL [8] which provides the following features:
ž the semantics and object-oriented concepts of in-

heritance provided by RDF through classes, sub-
classes, properties and sub-properties;
ž the extensible data typing capabilities of SOX;
ž the addition of a relation entity which allows spa-

tial, temporal, structural and conceptual relations
to be defined between classes and constraints on
the domain, range and property values to be spec-
ified;
ž the XML namespace facility;
ž cardinality;
ž temporal and spatial controls and specifications;
ž linking mechanisms which enable links between

descriptions and between content and descrip-
tions;
The two major problems associated with this pro-

posal are that it constitutes yet another schema or
language and there are likely to be quite complex
extensions necessary to the basic XML parser in
order to perform complete validation of all of the
constraints.

The W3C XML Schema Working Group [20] is
looking at a XML-based schema language which
provides support for data typing and structural con-
straints, currently lacking in XML DTDs. Their char-
ter includes delivering a recommendation on the best
combination of DCD, XML-Data, SOX and RDF
for validating document syntax. Based on the XML
Schema Requirements document [18], there is a very
real possibility that the schema which they develop
will satisfy the majority of the MPEG-7 DDL re-
quirements.

Acknowledgements

The authors wish to acknowledge that this work
was carried out within the Cooperative Research
Centre for Research Data Networks established un-
der the Australian Government’s Cooperative Re-
search Centre (CRC) Program and acknowledge the
support of CITEC and the Distributed Systems Tech-
nology CRC under which the work described in this
paper is administered.

373

References

[1] D. Bhat, On representing video structure using RDF, Doc
ISO=IEC JTC1=SC29=WG11 MPEG98=M4132, MPEG
Atlantic City Meeting, October 1998,

[2] T. Bray, Adding strong data typing to SGML and XML, May
1997, http://www.textuality.com/xml/typing.html

[3] A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D.
Suciu, XML-QL: a query language for XML, Submission to
W3C, 19 August 1998, http://www.w3.org/TR/NOTE-xml-
ql

[4] Document content description for XML, Submission to
W3C, 31 July 1998, http://www.w3.org/TR/NOTE-dcd

[5] Dublin Core Home Page, http://purl.org/DC/
[6] Extensible Markup Language (XML) 1.0, REC-xml-

19980210, W3C Recommendation 10 February 1998,
http://www.w3.org/TR/REC-xml

[7] Y. Gonno, F. Nishio, K. Haraoka and Y. Yamagishi, Meta-
data structuring of audiovisual data streams on MPEG-2
system, Metastructures ’98, Montreal, Canada, August
1998, http://www.gca.org/conf/meta98/

[8] J. Hunter, A proposal for an MPEG-7 description definition
LANGUAGE, P547, MPEG-7 Test and Evaluation AHG
Meeting, Lancaster, February 1999,

[9] J. Hunter and R. Iannella, The application of metadata
standards to video indexing, in: 2nd European Conf. on
Research and Advanced Technology for Digital Libraries,
Crete, Greece, September 1998, http://www.dstc.edu.au/RD
U/staff/jane-hunter/EuroDL/final.html

[10] MPEG-7, The Multimedia Content Description Interface,
http://drogo.cselt.stet.it/mpeg/

[11] MPEG-7 Requirements Document V.7, Doc ISO=IEC
JTC1=SC29=WG11 MPEG98=N2461, MPEG Atlantic City
Meeting, October 1998, http://drogo.cselt.stet.it/mpeg/publi
c/w2461.html

[12] F. Nishio, Y. Gonno, K. Haraoka and Y. Yamagishi,
Transporting RDF metadata associated with structured con-
tents, Metastructures ’98, Montreal, Canada, August 1998,
http://www.gca.org/conf/meta98/

[13] Resource Description Framework (RDF) model and syntax
specification, REC-rdf-syntax-19990222, W3C Recommen-
dation, 22 February 1999, http://www.w3.org/TR/REC-rdf-
syntax

[14] Resource Description Framework (RDF) schema specifica-
tion, WD-rdf-schema-19990218, W3C Working Draft, 18
February 1999, http://www.w3.org/RDF/Group/WD-rdf-sch
ema/

[15] J. Saarel, SiRPAC — Simple RDF parser and compiler, 25

February 1999, http://www.w3c.org/RDF/Implementations/
SiRPAC

[16] Schema for Object-Oriented XML (SOX), NOTE-SOX-
19980930, Submission to W3C, 15 September 1998,
http://www.w3.org/TR/NOTE-SOX/

[17] XML-Data, W3C Note, 5 January 1998, http://www.w3.org
/TR/1998/NOTE-XML-Data/

[18] XML Schema Requirements, NOTE-xml-schema-req-
19990215, W3C Note, 15 February 1999, http://www.w3
.org/TR/NOTE-xml-schema-req

[19] XSchema Specification, Version 1.0, November 1998,
http://www.simonstl.com/xschema/spec/xscspecv5.htm

[20] XML Schema Working Group, http://www.w3.org/XML/G
roup/Schemas.html

Jane Hunter is a Senior Research
Scientist within the Resource Dis-
covery Unit at DSTC, investigating
international metadata standards and
schemas for multimedia resources.
She has extensive experience in mul-
timedia indexing, through the devel-
opment of applications using IBM’s
Digital Library and the DSTC’s
SuperNOVA project. She is cur-
rently involved in the development
of the MPEG-7 Definition Descrip-

tion Language and is also an active participant within the Dublin
Core and RDF standards communities. She received a PhD
in Computer Animation from the University of Cambridge in
1994.

Liz Armstrong is the Director of
the Technology Transfer and Train-
ing Unit at the Cooperative Re-
search Centre for Distributed Sys-
tems Technology (DSTC Pty Ltd.)
in Brisbane, Australia. The Unit’s
activities are centred on the process
of transferring technology from the
DSTC to the Centre’s participant or-
ganisations through education, train-
ing, special events and secondment
programmes. Liz holds a Bachelor

of Commerce from Griffith University, with majors in public
policy, marketing and video production and she is currently
studying for a Masters of Commerce (Information Systems) at
the University of Queensland.

