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Abstract

Today’s Internet appliances feature user interface technologies almost unknown a few years ago: touch screens, styli,
handwriting and voice recognition, speech synthesis, tiny screens, and more. This richness creates problems. First, different
appliances use different languages: WML for cell phones; SpeechML, JSML, and VoxML for voice enabled devices such as
phones; HTML and XUL for desktop computers, and so on. Thus, developers must maintain multiple source code families
to deploy interfaces to one information system on multiple appliances. Second, user interfaces differ dramatically in
complexity (e.g, PC versus cell phone interfaces). Thus, developers must also manage interface content. Third, developers
risk writing appliance-specific interfaces for an appliance that might not be on the market tomorrow. A solution is to build
interfaces with a single, universal language free of assumptions about appliances and interface technology. This paper
introduces such a language, the User Interface Markup Language (UIML), an XML-compliant language. UIML insulates
the interface designer from the peculiarities of different appliances through style sheets. A measure of the power of UIML
is that it can replace hand-coding of Java AWT or Swing user interfaces.  1999 Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction

There has been an explosion of ways to create
user interfaces (UIs) for Web and network applica-
tions. First, there are markup languages: Dynamic
HTML, or DHTML (the interaction of HTML,
CSS [2] and XSL style sheets [4], the Document
Object Model [16], and scripting), XwingML [1],
and XML-based User Interface Language (XUL)
[9] for traditional desktop applications; the Wire-
less Markup Language (WML) for mobile devices

Ł Corresponding author.
1 E-mail: {abrams,phanouri,alanlb,williams,shuster}@harmonia.
com

like cell phones with displays [15]; and SpeechML
[7], Voice Markup Language (VoxML) [8], and Java
Speech Markup Language (JSML) [14], for voice-
enabled devices like conventional telephones. The
growing popularity of the Extensible Markup Lan-
guage (XML) [3] promises more languages. In addi-
tion, there are traditional programming and scripting
languages (e.g., Java, JavaScript, and Visual Basic
and CCC through Active-X).

Fueling this trend is an explosion in the variety
of appliances that could be used for Internet access.
At least five Internet appliance categories are pop-
ular today, as summarized in Table 1. Other appli-
ances include two-way pagers, electronic messaging
appliances, and systems for Web access via televi-

 1999 Published by Elsevier Science B.V. All rights reserved.
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Table 1
Typical characteristics of major internet appliances at start of 1999

Characteristics Internet appliances

PC Handheld PC Palm Cellular phone Voice phone

Can download
applications

Yes Yes Yes No No

Output devices ½ 800ð 600 color
and speaker

240ð 480 mono,
gray, or color

Portrait orientation
mono, gray

3 or 4 line character
text

Speaker

Input devices Keyboard, pointing
device, mike

Keyboard, stylus,
touch screen

Keypad, stylus, touch
screen

Keypad, mike Keypad, mike

UI metaphor GUI, multiple
windows

GUI, single window
plus message boxes

GUI, single window
plus message boxes,
handwriting recognition

Cards a Speech synthesis,
voice recognition,
keypad input

UI development tools DHTML, XwingML,
XUL, many more

OS specific toolkit,
Java

OS specific toolkit WML VoxML, SpeechML,
JSML

Graphics Yes Yes Yes No No

Primary memory, Mb 4–256 4–64 1–8 <1 None

Secondary memory,
Mb

Gigabytes None None None None

Processor speed,
MHz

233–450 75–190 16–75 �50 None

a A WML card is a combination of text, variables and commands that are used to display information and navigate a web on a
smal-format text display device. This is analogous to a small text-only web page.

sions (e.g., WebTV). Also emerging today are hybrid
appliances: cellular phones which contain keyboards
and allow downloadable applications, and at least one
smart phone that runs a palm PC operating system.

This has created a Tower of Babel for user inter-
face designers and software developers. First, inter-
face designers must learn multiple languages. Sec-
ond, they may need to maintain multiple bodies of
‘source code’. For example, a hospital’s information
system might be accessible via Web browsers on
PCs in the building, but require a separate interface
implemented in another language, such as WML, to
give cell phone access to doctors on rounds. Just for
a PC alone, the interface code can represent about
half of the code in applications [12].

The situation today is analogous to what hap-
pened with PCs two decades ago: many types of
hardware were developed, each with its own ap-
plication programming interface (API). A scaling
problem arose: software developers could not di-
rectly support new hardware as more devices came
on the market. Eventually operating systems offered
a single API, shielding the software developer from
the underlying device-specific APIs. This paper ex-

plores the development of an analogous layer for
user interfaces for Web applications.

In fact, we argue that it is disadvantageous for
interface designers to directly use appliance-specific
languages. Traditional user interface languages work
for one type of interface, but fail to scale when faced
with the new appliances that are now appearing on
the market. Consider how ‘stressed’ the design of
HTML has become: it evolved from describing doc-
uments and forms-based user interfaces in HTML
2.0 to direct manipulation interfaces in DHTML,
to speech synthesis with CSS. It is time to raise
the abstraction in building user interfaces: a uni-
versal, appliance-independent markup language for
user interfaces should be created as a standard. That
language could describe user interfaces in a highly
appliance-independent manner, and map the descrip-
tion to other markup languages or programming
languages via style sheets.

This paper discusses design issues in such a uni-
versal language and describes the User Interface
Markup Language (UIML) that allows designers to
describe the user interface in generic terms, and then
use a style description to map the interface to various
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operating systems (OSs) and appliances. Thus, the
universality of UIML makes it possible to describe
a rich set of interfaces and reduces the work in
porting the user interface to another platform (e.g.,
from a graphical windowing system to a handheld
appliance) to changing the style description.

1.1. Historical motivation for an
appliance-independent UI language

Throughout history, people have raised the level
of abstraction with which they communicate with
computers. Originally, people programmed comput-
ers in binary machine code. Later, assembly lan-
guage was a big revolution: people could write
programs using mnemonics instead of strings of
zeros and ones. Then came programming languages
and compilers. Programmers resisted high-level pro-
gramming languages at first because compilers gen-
erated less efficient machine code than hand-coded
assembly programs. However, high-level program-
ming languages allowed a wider range of people to
program.

The advent of the Web again raised the abstraction
level: first, documents could be published by anyone
in a platform-independent format. HTML 2 empow-
ered non-programmers to create simple forms-based
interfaces. DHTML added direct manipulation. Style
sheets added further abstraction by separating con-
tent and presentation style, simplifying porting and
customization.

Because DHTML requires a complex interpre-
tation environment to render the interface, new
markup languages were proposed for small appli-
ances: WML and Compact HTML [6]. However,
each of these languages embeds specific assump-
tions about the type of interface or appliance with
which they will be used. HTML describes a docu-
ment, WML describes cards for a handheld appliance
with small screen, VoxML assumes voice, and so on.

User interface technology is also advancing.
Graphical user interfaces with pointing devices are
giving way to natural sounding speech synthe-
sis, voice and handwriting recognition, full motion
video, virtual reality and even mechanisms to receive
input from brain waves.

These developments argue for one more step in
abstracting user interfaces — good for both today’s

computer interfaces and future interfaces. This next
step is the subject of this paper.

1.2. Developer reasons for an
appliance-independent UI language

Some of the benefits for application developers
and user interface designers in using a single, appli-
cation-independent UI language are discussed below.

1.2.1. Manage family of interfaces of varying
complexity

Figs. 1–3 show three different interfaces to a
the same Internet accessible financial management
system, for a desktop PC, hand-held PC, and cellu-
lar phone, respectively. The interface designer must
manage multiple interfaces or views of an informa-
tion system. Obviously, this is difficult if more than
one language must be involved. The PC interface
might be in Java or DHTML, the handheld PC in-
terface in CCC with the API of the handheld PC’s
OS, and the cell phone interface in WML. This intro-
duces a costly problem: the developer must maintain
three different bodies of source code for the three
interfaces. The effort required to keep all interfaces
consistent, or maintain the interfaces as the function-
ality of the underlying financial system is expanded,
grows linearly with the number of interfaces. In con-
trast, use of an appliance-independent UI language
would greatly reduce the amount of code that needs
to be maintained and make the maintenance cost
sub-linear. (The maintenance cost is sub-linear, but
not constant. That is because the appliance-indepen-
dent portion can be maintained independent of the
number of appliances used, while the portion that
maps to specific devices grows with the number of
devices.)

1.2.2. Avoid market risks of developing for new
appliances

Suppose that in 18 months the particular hand-
held OS or handheld device used for the financial
application goes off the market. Then the invest-
ment of CCC code in the original handheld PC’s
OS must be discarded, and the interfaces written to
use a new API. Therefore, developers are cautious
about committing resources to developing interfaces
for custom software applications on new devices.
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Fig. 1. A financial application rendered for a desktop PC.

This makes it difficult for appliance manufacturers
to introduce new technologies. The use of an appli-
ance-independent UI language would allow reusing
the interface description that is appliance-indepen-
dent with new technologies, reducing the risk of
adopting new technologies.

1.3. Why a new language?

We argue that it is necessary to start from scratch
and design a new language. One might argue that an
existing language could be augmented or modified to
be mappable to an arbitrary appliance; why design a
new language?

One answer is that existing languages were de-
signed with inherent assumptions about the type of
user interfaces and appliances for which they would
be used. For example, HTML started as a language
for describing documents (with tags for headings,
paragraphs, and so on), and was augmented to de-
scribe forms. As another example, Javascript events
correspond to a PC with a GUI, mouse, and key-
board. In theory, it is possible to modify languages
to handle any type of appliance, but this produces a

Fig. 2. Handheld PC rendering.

stress on the language design. Witness the complex-
ity added to HTML from version 2 to 4. Imagine the
complexity if a future version of DHTML supported
any appliance type.

A language like Java contains fewer assumptions
and would be more feasible to use as a universal,
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Fig. 3. Cell phone rendering.

appliance-independent language. But this would re-
quire Java to run on all appliances (which may never
occur), and appliance-specific code (e.g., for layout)
would be needed.

Based on these arguments, it would be more nat-
ural to create a new language using XML. XML
permits new tags to be defined, which is appeal-
ing in designing a language that must work with
yet-to-be-invented appliances.

1.4. Related work

The idea of creating a universal notation to de-
scribe user interfaces has been around for a while.
Natural language is regarded as inappropriate for
this job: it tends to be lengthy, vague, and broad
[13]. Instead, formal languages have proven effec-
tive. Formal languages have a specified grammar
and are easy to parse. Languages created in the
human–computer interaction community are known
as User Interface Management Systems (UIMS). A
variety of UIMSs have been proposed (see [10]
and [11]).

2. Design considerations for an appliance-
independent UI language for the Web

We next discuss some important properties for a
language for user interface development that is appli-

ance-independent. The list of properties underscores
those problems that we sought to solve with UIML.
Later, after UIML is introduced (in Section 3), we
return to this list and explain how UIML addresses
these properties (in Section 4).

Create natural separation of user interface
from non-interface code. An application program
can be divided into two parts: (1) the user interface,
and (2) the code behind the interface that implements
the internal logic of the program and interacts with
external entities (e.g., database servers). A clear line
should distinguish the two parts for several reasons.

First, whereas programmers implement the inter-
nal logic, a variety of specialists may serve on the
user interface design team: human factor specialists,
graphic artists, cognitive psychologists, as well as
programmers. Thus, whatever metaphors and con-
cepts the UI language uses, it should be clear which
are part of the user interface and which are part of
the internal program logic. Otherwise, the two teams
of developers do not have clear responsibilities in
implementing an application program.

A second reason for a clear line between user
interface and internal program logic is to allow
a many-to-one relationship between the two. One
may want multiple user interfaces to the same pro-
gram logic. For example, the popular WinZip pro-
gram (www.winzip.com) has a Wizard Interface (for
novice users) and a Standard Interface (for experts).
Or one may want a single user interface to control
multiple servers, each with distinct internal program
logic. For example, one user interface might provide
access to two databases.

Be usable by non-programmers and occasional
users. Given that user interface designers may range
from human factor specialists to graphic artists and
cognitive psychologists, it is desirable for a user
interface to be built without requiring programmers.
The explosion in the number of people worldwide
that design Web pages occurred, in part, because
HTML is a declarative language usable by people
who do not know traditional procedural languages.

In addition, the syntax and semantics of a UI
language should allow an occasional user to start
building interfaces without extensive study. A UI
language should have a syntax that is familiar and
easy to learn. A simple user interface should cor-
respond to a short, simple description in the UI
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language. The semantics of the UI language should
be intuitive enough so that the occasional user can
pick up and understand a UI description.

Finally, the majority of interface designers do not
currently design interfaces for multiple appliances.
So it is important that the UI language not be overly
complex or cumbersome to use for designers who
only care about using a single appliance.

Facilitate rapid prototyping of user interfaces.
User interface design teams often need to implement
prototype user interfaces quickly to gain feedback
from customers or end-users. A design methodol-
ogy of iterative enhancement may be used, which
requires interface changes to be made quickly and
easily. Or a design team may use a scenario ap-
proach, in which an interface representing some but
not all desired functions is created. For these users, a
UI language must permit rapid prototyping.

Allow the language to be extensible. A UI lan-
guage must work with appliances and interface tech-
nologies not yet invented. This implies that the lan-
guage should not be hard-wired to use tags, at-
tributes, or keywords that imply a particular interface
technology. Here are some examples of inappropriate
UI language constructs:

Construct Problem

<WINDOW> tag The appliance may not use a
graphical interface, but rather
voice.

if Mouse Down then The appliance may not use a
mouse.

Allow a family of interfaces to be created in
which common features are factored out. A user
interface in the future may be delivered on dozens of
different appliances. Some might have large screens
and keyboards. Others might have small or no
screens and only a keypad, or perhaps just a touch
screen or voice input. It would be unreasonable for
a UI language to require different user interface de-
scriptions for each appliance. Instead, the interface
descriptions should be organized into a tree or other
structure, with interfaces common to multiple appli-
ances factored out into ‘families’.

Facilitate internationalization and localization.
A UI language should permit user interface descrip-
tions to be presented using multiple spoken lan-

guages (internationalization) and special formatting
appropriate for the location of the user (localiza-
tion).

Allow efficient download of user interfaces
over networks to Web browsers. There are two
ways to deliver interfaces to Web browsers: deliver
code (e.g., Active-X, Java) or deliver HTML. De-
livering code allows an arbitrarily complex interface
to be rendered. However, code files are hundreds of
kilobytes or larger and slow to download. Also, code
is often not cached by browsers and proxy servers,
thus wasting network bandwidth every time the in-
terface is started. On the other hand, HTML files
are typically small (tens of kilobytes) and cachable,
allowing relatively fast download, but HTML cannot
generate as rich an interface as code. Ideally, an
application-independent UI language would achieve
the flexibility of downloading code, but require no
more time or network bandwidth than downloading
HTML.

Facilitate security. Current methods for distribut-
ing user interfaces from a Web server over the In-
ternet to user agents are notorious for security prob-
lems. Active-X controls download executable code,
which could be malicious. Java applets execute with
a sandbox model to limit the resources that a mali-
cious applet can attack, but subtle security problems
have been discovered [5]. Consequently, some fire-
walls block Active-X and Java. Even HTML forms
that invoke code on a server via the Common Gate-
way Interface have produced some famous secu-
rity holes in Web servers (for example, tainted Perl
scripts). Given this history, it is desirable that an
appliance-independent UI language be safer, and that
firewall operators do not feel it is necessary to block
the language.

Promote a high degree of usability for people
with disabilities. An appliance-independent UI lan-
guage facilitates interface design for people with dis-
abilities in a natural way. Accessibility for disabled
persons may require alternate interface technology
— for example, using voice synthesis or Braille.
This mandates that a user interface designer create
not one, but multiple user interfaces. Thus an appli-
ance-independent UI language must naturally allow
management of multiple interfaces.
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3. UIML language description and examples

3.1. Overview — anatomy of the interface

In UIML version 2.0, a user interface is simply
set of interface elements with which the user inter-
acts. These elements may be organized differently
for different categories of users and different fami-
lies of appliances. Each interface element has data
(e.g., text, sounds, images) used to communicate in-
formation to the user. Interface elements can also
receive information from the user using interface
artifacts (e.g., a scrollable selection list) from the
underlying appliance. Since the artifacts vary from
appliance to appliance, the actual mapping (render-
ing) between an interface element and the associated
artifact (widget) is done using a style sheet.

Runtime interaction is done using events. Events
can be local (between interface elements) or global
(between interface elements and objects that rep-
resent an application’s internal program logic [i.e.,
the backend]). Since the interface typically com-
municates with a backend to perform its work, a
runtime engine provides for that communication.
The runtime engine also facilitates a clean separation
between the interface and the backend.

3.2. Language description

UIML describes a user interface with five sec-
tions: description, structure, data, style, and events.
UIML will be exemplified by the interface in Fig. 4.

3.2.1. Five parts of UIML
The logical structure of an interface description in

UIML follows this skeleton:

Fig. 4. A single window with a menu.

<?xml version="1.0" standalone="no"?>
<uiml version="2.0">

<interface name="Figure5"
class="MyApps">

<description>...</description>
<structure>...</structure>
<data>...</data>
<style>...</style>
<events>...</events>

</interface>
<logic>
</logic>

</uiml>

The <description> section lists the individual
elements that collectively form an application’s user
interface. For example, in a word processor on a PC,
each menu item (e.g., ‘Open’ in the ‘File’ menu),
toolbar button, pulldown list, and so on are interface
elements. Each element is given a unique name
in the user interface and has a particular function.
The description section does not specify how each
element should be rendered or even what its function
is. Elements can communicate with the backend
and with other elements. Here is a UIML fragment
exemplifying a description section for Fig. 4:

<description>
<element name="Main"

class="Main"/>
<element name="File"

class="ActionGroup"/>
<element name="NewAction"

class="ActionItem"/>
<element name="CloseAction"

class="ActionItem"/>
<element name="QuitAction"

class="ActionItem"/>
</description>

Each element must have a name and a class
attribute. The name must be unique within the inter-
face description. The notion of ‘class’ follows that of
CSS in that it specifies an object type; the element’s
‘name’ uniquely identifies an instance of that type. A
style associated with all instances of a class is asso-
ciated with the same ‘class’ value; a style associated
with a specific instance of a class is associated with
the same ‘name’ value.
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The <structure> section specifies which ele-
ments from the description section are present for a
given appliance, and how the elements are organized.
In general, a structure section lists a subset of the
interface elements listed in the description section. It
is a subset because some appliances (e.g., handheld
appliances) cannot support all the available function-
ality for a given application. Here is the structure
section from a UIML fragment:

<structure>
<element name="Main">

<element class="Bar">
<element name="File">
<element name="NewAction"/>
<element name="CloseAction"/>
<element class="Separator"/>
<element name="QuitAction"/>

</element>
</element>
</element>

</structure>

Elements in the structure section are selected
from the list in the description section. Each ele-
ment is identified by the name attribute. In many
cases, it is desirable to introduce elements that are
not part of the application for usability reasons. For
example, a menu separator enhances usability but
does not add new functionality. These elements have
only a class attribute, and cannot receive or generate
events.

The <data> section contains data that is appli-
ance-independent but application-dependent. All the
information that is presented to the user is described
in this section. For example, a word-processor may
have a spell-checking element. The word ‘Spelling’,
which is used to display the element, does not de-
pend on the underlying appliance but rather on the
application and the user. It depends on the applica-
tion for its meaning, and on the user for the language
to display. However, it does not depend upon whether
the run-time widget is a button or a menu item. Here
is the data section for Fig. 4:

<data>
<content name="Main">Example</content>
<content name="File">File</content>
<content name="NewAction">New</content>
<content name="CloseAction">Close</content>
<content name="QuitAction">Quit</content>

</data>

Each line in the <data> section has a name
attribute that identifies the corresponding interface
element. The text for each content element can be
any valid XML code. This allows content with in-
ternational characters and special formatting (e.g.,
HTML).

The <style> section contains the style sheet
information and data that are appliance-dependent.
The backend is not concerned with whether the input
came from the command-line, from a text field, or
from voice recognition. Here is the style section for
Fig. 4:

<style>
<attribute class="Main" type="rendering" value="java.awt.Frame"/>
<attribute class="Main" type="size" value="100,80"/>
<attribute class="ActionItem" type="rendering" value="java.awt.MenuItem"/>
<attribute class="Separator" type="rendering"

value="wrapper.MenuSeparator"/>
<attribute class="ActionGroup" type="rendering" value="java.awt.Menu"/>
<attribute class="Bar" type="rendering" value="java.awt.MenuBar"/>

</style>
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Each line in the <style> section describes a set
of interface elements that have the same class at-
tribute. Various style attributes (e.g., color, font size)
for specific appliances can be specified. Different
style sheets for different appliances are created. Thus
modifying one line in the style can have dramatic
changes in the interface. A special attribute called
rendering maps all the elements with the same class
attribute to a widget class in the native UI toolkit. In
the example above, changing all the menuitems into
buttons is achieved by simply changing the rendering
for the ‘ActionItem’ class.

Finally, the <events> section describes the run-
time interface events, which may be communicated

between the interface elements and the backend.
Events allow elements to synchronize with each other.
Events are both appliance-dependent and application-
dependent. To avoid rewriting the event handlers for
each appliance and application combination, UIML
allows programmers to specify events in generic
terms and then resolve them to appliance-depen-
dent events at runtime using the <style> section. A
generic event has a trigger and one or more of source
element name, destination element name, and action.
It can be triggered by the user (e.g., when the user
enters some text), by the application (e.g., when the
backend displays data), or by the underlying system
(e.g., when a timer expires or an exception is raised):

<events>
<event name="SelectQuit" class="ActionSelect" source="QuitAction"

trigger="Select">
<action target="Main" method="exit"/>

</event>
</events>

The <events> section may contain multiple
event descriptions. Each event is identified with a
name that is unique within the interface description.
Events and elements are on different namespaces and
can share the same name. The class attribute is used
to resolve events to events from the target appliance,
using a style sheet.

3.2.2. Runtime interaction and events
UIML is a declarative language, which means

that the user specifies what needs to be done, but
not how. For example, when the user declares that
an interface element is to be rendered as an icon, he
does not specify the runtime behavior: single-click
(for Macintosh OS) or double-click (for Microsoft
Windows) for selection. The user can only set at-
tributes exposed by the underlying toolkit to affect
the runtime behavior.

At runtime, two different types of events can oc-
cur: events that are localized within the interface and
involve no more than simple attribute assignments,
and events that propagate outside the interface and
involve complex calculations. Events are declared in
generic terms in the events section and are resolved
to actual appliance events at runtime using the style

sheet. A user interface that is sufficient for demon-
strations and prototypes can often be constructed
using only localized events.

One of UIML’s goals is to break the dependency
between the interface and the backend. Thus, no cal-
culations are defined in the interface and all calcula-
tions and backend integration actions are completely
hidden. This is achieved by having a runtime engine
monitor all events. Application=interface integrators
map generic interface events to scripts or application
methods (explained in the next section).

3.2.3. Backend integration
There are many models in building software. At

one extreme, the entire user interface acts as an
object or set of objects, with attributes that may
be programmatically read from and written to by
the backend (e.g., Visual Basic applications). At the
other extreme, the backend is the application, which
is controlled from a simple user interface either
directly (e.g., command-line-driven applications) or
via remote procedure calls. Most software lies some-
where in between, and UIML supports the full range.
The backend can appear as an invisible interface ele-
ment and accept events defined in the event section.
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Or, interface elements can appear as objects and the
backend can manipulate them just like any other
software component.

However, to maintain the clean separation be-
tween interface and application, each side should
be designed in isolation. The <logic> section of
UIML provides the mapping between the two sides.
This allows interfaces (or at least portions thereof) to
communicate with any application, given the appro-
priate event and style mappings, and vice versa.

3.3. Domain-specific UIML=GUI

As with any new technology, the learning curve

associated with the technology can and often does
have a profound effect upon that technology’s accep-
tance and usefulness. Programmers typically become
proficient with specific development toolkits and en-
vironments, and may be reluctant to adopt a different
set of constructs or different terminology, despite
tangible benefits. In order to flatten this learning
curve, UIML allows for domain-specific variants
which adopt vocabularies closely aligned with spe-
cific appliances or even application domains. A vari-
ant is supported through the definition of a suitable
set of XSL transformations. For example, in a vari-
ant of UIML known as UIML=GUI, the interface in
Fig. 4 may be expressed as follows:

<interface name="DSUIML Example" class="JavaAWT">
<window name="Main" content="UIML Example">
<menubar name="Selections">

<menu name="FileSelection" caption="File" >
<menuitem name="itemF0" caption ="New"/ shortcut="Ctrl-N">
<menuitem name="itemF3" caption ="Close"/ >
<menuseparator/>
<menuitem name="itemF4" caption ="Quit"/>

</menu>
</menubar>

</window>
</interface>

This example is more compact and easier to
read than the UIML fragments in Section 3.2, but
as a tradeoff it is specific to an appliance with
a graphical user interface. Unlike other domain-
specific user interface languages (e.g., XwingML,
XUL), UIML=GUI can be mapped to UIML, which
can then be remapped to other appliance types (e.g.,
ones without graphical user interfaces).

4. How UIML matches the design considerations

We now return to the design considerations pre-
sented in Section 2, and explain how UIML ad-
dresses them.

Create natural separation of user interface
from non-interface code. UIML, like HTML, is
a declarative language. It describes what should be
present in the user interface. In contrast, conventional

programming languages and scripting languages are
procedural: they specify how an operation is exe-
cuted, through procedures. This creates a clear line
between the interface code and the internal program
logic: interfaces are described with a declarative lan-
guage, while the internal logic is described by a
procedural language.

Unlike HTML, UIML permits a variety of event
handling to be described within UIML without rely-
ing on a (procedural) scripting language. Each user
interface component enumerated in UIML can be
associated with a set of events. Each event can either
declare that a user interface attribute must equal a
new value, or invoke an operation outside the user
interface (e.g., a procedure in the backend program
logic). The ability of UIML events to set new at-
tribute values within UIML allows many common
events to be handled without any procedural code.
Thus, a user interface designer can implement com-
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Fig. 5. Font panel; event handling is implemented entirely within
UIML.

plex behavior, such as allowing buttons that change
the appearance of the interface, without relying on
procedural event handlers. For example, the font
panel in Fig. 5 is implemented entirely in UIML
without using procedural code (see uiml.org/papers/
www8 for an example).

Be usable by non-programmers and occasional
users. The fact that UIML is a declarative language,
similar to HTML, permits its use by non-program-
mers. To give UIML an easy-to-learn syntax, it is
XML-compliant. But making UIML easy for oc-
casional users to work with and avoiding verbose
UIML descriptions presented a design problem. On
the one hand, we wanted UIML to be general so
that it worked for UI technologies yet to be invented.
Thus UIML uses a generic tag <element>, with the
class attribute used to map a particular <element>
to a representation in a particular user interface tech-
nology (e.g., a button or panel in a GUI). On the
other hand, we wanted the tags in UIML to look
natural (arguing for tags like <WINDOW> for UI
designers that only deploy interfaces on a single
appliance).

The solution was to make UIML general (Sec-
tion 3.2), but to also create domain-specific variants
of UIML with appliance-specific vocabularies that
map to general UIML (Section 3.3). In fact, do-
main-specific UIML descriptions are significantly
smaller than general UIML descriptions, because
structure and style information are now indirectly
specified.

Facilitate rapid prototyping of user interfaces.
Several aspects of UIML facilitate rapid prototyping:
(1) The appearance of an interface may quickly be

changed simply by modifying a line or two of a
style sheet.

(2) Because UIML is declarative, a few lines of
UIML are equivalent to many lines of a procedu-
ral programming language.

Allow the language to be extensible. Two aspects
of UIML facilitate extensibility:
(1) UIML tags can be assigned the attribute class.

UIML authors can create new values of the
class attribute to extend UIML for appliances
with interface technologies not in use today. In
addition, the style sheet maps values of the class
attribute to particular renderings for particular
appliances.

(2) Events that arise for user interface elements are
not hard-wired into UIML. Instead, events are
named with a class attribute, and attribute values
are mapped to events appropriate for specific
interface technologies through a style sheet.

Allow a family of interfaces to be created in
which common features are factored out. To facili-
tate creation of a family of interfaces (e.g., Figs. 1–3),
UIML separately enumerates the elements constitut-
ing any user interface (with the <description> tag)
and the user interface structure (with the <struc-
ture> tag). Each structure may be named with a
family name. The family name may be used within
a style sheet and elsewhere in UIML to share portions
of interface descriptions among family members.

Facilitate internationalization and localization.
UIML separates the content of an interface from
the interface description. The text used in the user
interface that an end user sees (e.g., button labels,
menu labels) or hears is not embedded within the
interface description. Instead, this wording is given
in Unicode in the UIML content section (within
the <data> tag). There may be multiple content
sections, each with a different name (e.g., a language
name), corresponding to different spoken languages.
In addition, style sheet elements may be keyed with
the same names, so that appropriate layout, color,
voice inflection, and other presentation attributes are
used with each language.

Allow efficient download of user interfaces
over networks to Web browsers. UIML achieves
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the ideal of allowing the flexibility of downloading
code (e.g., Java or Active-X), but using smaller files
that are relatively quick to download and that can be
cached.

For example, with UIML one can create, to our
knowledge, any user interface that one can create us-
ing Java with the AWT or Swing toolkits, yet require
no download of Java code to the Web browser. (The
interested reader can try this with the Java renderer
plug-in described in the Conclusions [Section 5].) In
essence, the Java portion is downloaded once to the
client as a UIML interpreter plug-in, which can then
interpret any UIML file.

Facilitate security. Because UIML is a declara-
tive language, one cannot use it to write procedural
programs. Thus it has an inherent safeguard com-
pared to procedural languages. Therefore the secu-
rity of UIML is comparable to HTML without a
scripting language. Thus firewall operators are un-
likely to block UIML, just as they do not block
HTML. However, like HTML, UIML can expose
security holes on a server if the procedural code on
the server is poorly written. And UIML may permit
denial of service attacks if a malicious UIML file
sets an unreasonably large number of attribute val-
ues in response to a user interface event. However,
a UIML interface is generally safer than procedural
languages and comparable in safety to HTML.

Promote a high degree of usability for people
with disabilities. UIML makes no inherent assump-
tions that its output will be rendered visually or that
input will come from standard mechanisms. This
makes it well suited for rendering interfaces on non-
visual appliances like phones or using specialized
input mechanisms. Just as with DHTML, cascading
style sheets facilitate accessibility by permitting mul-
tiple styles to render UIML onto different display or
input hardware. Like CSS2, the end user, not the
UIML author, has the final say over the style sheet
used to render an interface. Information that can
confuse non-visual renderings of interfaces, such as
font and image positioning alignment, are confined
to style sheets used for visual appliances. Finally, the
<description> section of UIML allows different
subsets of interface elements to be present on differ-
ent appliances. No analog to this exists in HTML or
any conventional programming language.

5. Conclusions

When the Web was young, user interfaces con-
sisted of HTML forms displayed in browsers on
desktop computers. Later came more sophisticated
user interfaces through Active-X, Java, and Dynamic
HTML with style sheets. Today, end users are mov-
ing from desktop computers to many Internet appli-
ances, such as palm PCs, handheld PCs, and cellular
phones with displays. Along with this shift, user in-
terface technology is moving beyond graphical user
interfaces, keyboards, and pointing devices to new
forms: touch screens, handwriting recognition, natu-
ral sounding speech synthesis, voice recognition, full
motion video, and virtual reality. Exotic technologies
like eye tracking and coupling of computers to brain
waves are being explored.

In this new world of many interface technolo-
gies on many types of appliances, it is too time
consuming to hand-code a user interface for each ap-
pliance. This motivated the development of the User
Interface Markup Language (UIML) to describe user
interfaces in an appliance-independent manner. (For
example, the interfaces in Figs. 1–3 for three appli-
ances were generated from a single UIML descrip-
tion with three style sheets.) UIML is a declarative
language that distinguishes which user interface ele-
ments are present in an interface, what the structure
of the elements are for a family of similar appliances,
what natural language text should be used with the
interface, how the interface is to be presented or ren-
dered using cascading style sheets, and how events
are to be handled for each user interface element.
The UIML approach has many benefits:
ž Interface designers learn one language, yet can

use any appliance.
ž UIML offers the expressive power of program-

ming languages like Java with the AWT and
Swing toolkits, but the advantages of a declarative
language like HTML: faster download time, better
security, and usability for non-programmers.
ž UIML is XML-compliant, thereby providing a

natural way for XML users to create user inter-
faces for client-server applications, or to embed
interfaces in documents and databases.
ž Designers of new interface hardware can offer a

simple migration path by mapping the universal
language to their appliance.
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ž UIML is designed to manage a family of inter-
faces with different capabilities. This is a distin-
guishing characteristic compared to other markup
or programming languages.
ž The ability to manage a family of interfaces sim-

plifies the task of designing several versions of a
user interface to address accessibility issues.
UIML is rendered into a usable interface on an ap-

pliance either through interpretation or compilation to
another markup or programming language. The ren-
derer might be an application installed on the client, a
Web browser plug-in, or a compiler on a server.

To learn more about the latest version of UIML, see
the examples and tutorials available at uiml.org. (This
paper describes UIML version 2.0.) An extended ver-
sion of this paper, which includes the full UIML for
the font example in Fig. 5, is available at www.harm
onia.com/papers/www8. To try UIML, open source
code for a parser and renderer are available at
uiml.org.
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