
ELSEVIER

Trawling the Web for emerging cyber-communities

Ravi Kumar 1, Prabhakar Raghavan Ł,1, Sridhar Rajagopalan 1, Andrew Tomkins 1

IBM Almaden Research Center K53, 650 Harry Road, San Jose, CA 95120, USA

Abstract

The Web harbors a large number of communities — groups of content-creators sharing a common interest — each of
which manifests itself as a set of interlinked Web pages. Newgroups and commercial Web directories together contain of
the order of 20,000 such communities; our particular interest here is on emerging communities — those that have little
or no representation in such fora. The subject of this paper is the systematic enumeration of over 100,000 such emerging
communities from a Web crawl: we call our process trawling. We motivate a graph-theoretic approach to locating such
communities, and describe the algorithms, and the algorithmic engineering necessary to find structures that subscribe to
this notion, the challenges in handling such a huge data set, and the results of our experiment. 1999 Published by
Elsevier Science B.V. All rights reserved.

Keywords: Web mining; Communities; Trawling; Link analysis

1. Overview

The Web has several thousand well-known, ex-
plicitly defined communities — groups of individ-
uals who share a common interest, together with
the Web pages most popular amongst them. Con-
sider for instance, the community of Web users
interested in Porsche Boxster cars. There are sev-
eral explicitly gathered resource collections (e.g.,
Yahoo’s Recreation: Automotive: Makes and Mod-
els: Porsche: Boxster) devoted to the Boxster. Most
of these communities manifest themselves as news-
groups, Webrings, or as resource collections in direc-
tories such as Yahoo! and Infoseek, or as homesteads
on Geocities. Other examples include popular topics
such as ‘Major League Baseball,’ or the somewhat
less visible community of ‘Prepaid phone card col-

Ł Corresponding author.
1 E-mail: {ravi,pragh,sridhar,tomkins}@almaden.ibm.com

lectors’. The explicit nature of these communities
makes them easy to find — it is simply a matter
of visiting the appropriate portal or newsgroup. We
estimate that there are around twenty thousand such
explicitly defined communities on the Web today.

The results in this paper suggest that the dis-
tributed, almost chaotic nature of content-creation
on the Web has resulted in many more implicitly
defined communities. Such implicitly defined com-
munities often focus on a level of detail that is
typically far too fine to attract the current interest
(and resources) of large portals to develop long lists
of resource pages for them. Viewed another way, the
methods developed below identify Web communities
at a far more nascent stage than do systematic and
institutionalized ontological efforts. (The following
preview of the kinds of communities we extract from
the Web may underscore this point: the commu-
nity of Turkish student organizations in the US, the
community centered around oil spills off the coast

 1999 Published by Elsevier Science B.V. All rights reserved.

404

of Japan, or the community of people interested in
Japanese pop singer Hekiru Shiina.)

There are at least three reasons for systematically
extracting such communities from the Web as they
emerge. First, these communities provide valuable
and possibly the most reliable, timely, and up-to-date
information resources for a user interested in them.
Second, they represent the sociology of the Web:
studying them gives insights into the intellectual
evolution of the Web. Finally, portals identifying and
distinguishing between these communities can target
advertising at a very precise level.

Since these implicit communities could outnum-
ber the explicit ones by at least an order of magni-
tude, it appears unlikely that any explicitly defined
manual effort can successfully identify and bring or-
der to all of these implicit communities, especially
since their number will continue to grow rapidly
with the Web. Indeed, as we will argue below, such
communities sometimes emerge in the Web even
before the individual participants become aware of
their existence. The question is the following: can
we automatically recognize and identify communi-
ties that will clearly pass under the radar screen of
any human ontological effort?

The subject of this paper is the explicit identifica-
tion of (a large number of) these implicit communi-
ties through an analysis of the Web graph. We do not
use search or resource-gathering algorithms that are
asked to find pages on a specified topic. Instead, we
scan through a Web crawl and identify all instances
of graph structures that are indicative signatures of
communities. This analysis entails a combination
of algorithms and algorithmic engineering aimed at
enumerating occurrences of these subgraph signa-
tures on the Web. We call this process trawling the
Web.

In the process of developing the algorithm and
system for this process, many insights into the fine
structure of the Web graph emerge; we report these
as well.

1.1. Related prior work

Link analysis. A number of search engines and re-
trieval projects have used links to provide additional
information regarding the quality and reliability of
the search results. See for instance [4,5,8,9,14]. Link

analysis has become popular as a search tool. How-
ever, our focus in this article is in using link analysis
for a different purpose: to understand and mine com-
munity structure on the Web.

Information foraging. The information foraging
paradigm was proposed in [19]. In their paper, the
authors argue that Web pages fall into a number of
types characterized by their role in helping an infor-
mation forager find and satisfy his=her information
need. The thesis is that recognizing and annotating
pages with their type provides a significant ‘value
add’ to the browsing or foraging experience. The
categories they propose are much finer than the hub
and authority view taken in [14], and in the Clever
project. Their algorithms, however, appear unlikely
to scale to sizes that are interesting to us.

The Web as a database. A view of the Web as a
semi-structured database has been advanced by many
authors. In particular, LORE (see [1]) and WebSQL
(see [18]) use graph-theoretic and relational views
of the Web. These views support a structured query
interface to the Web (Lorel and WebSQL, respec-
tively) which is evocative of and similar to SQL. An
advantage of this approach is that many interesting
queries, including methods such as HITS, can be
expressed as simple expressions in the very powerful
SQL syntax. The associated disadvantage is that the
generality comes with a computational cost which is
prohibitive in our context. Indeed, LORE and Web-
SQL are but two examples of projects in this space.
Some other examples are W3QS [15], WebQuery
[7], Weblog [17], and ParaSite [20].

Data mining. Traditional data mining research,
see for instance [2], focuses largely on algorithms
for inferring association rules and other statistical
correlation measures in a given data set. Our notion
of trawling differs from this literature in several
ways.
(1) We are interested in finding structures that are

relatively rare — the graph-theoretic signatures
of communities that we seek will perhaps num-
ber only a handful — for any single community.
By contrast, data mining tools look for patterns
based on support and confidence.

(2) An exhaustive search of the solution space is
infeasible (even with efficient methods such as a
priori [2] or Query Flocks [21]); unlike market
baskets, where there are at most about a mil-

405

lion distinct items, there are between two and
three orders of magnitude more ‘items’, i.e., Web
pages, in our case.

(3) The relationship we will exploit, namely co-cita-
tion, is effectively the join of the Web ‘points
to’ relation and its transposed version, the Web
‘pointed to by’ relation. The size of this rela-
tion is potentially much larger than the original
‘points to’ relation. Thus, we need methods that
work implicitly with the original ‘points to’ re-
lation, without ever computing the co-citation
relation explicitly.

Algorithmic and memory bottleneck issues in
graph computations are addressed in [13]. The fo-
cus in this work is in developing a notion of data
streams, a model of computation under which data
in secondary memory can be streamed through main
memory in a relatively static order. They show a rela-
tionship between these problems and the theoretical
study of communication complexity. They use this
relationship mainly to derive impossibility results.
Gibson et al. [12] describe experiments on the Web
in which they use spectral methods to extract infor-
mation about ‘communities’ in the Web. They use
the non-principal eigenvectors of matrices arising
in Kleinberg’s [14] HITS algorithm to define their
communities. They give evidence that the non-prin-
cipal eigenvectors of the co-citation matrix reveal
interesting information about the fine structure of a
Web community. While eigenvectors seem to provide
useful information in the contexts of search and clus-
tering in purely text corpora (see also [10]), they can
be relatively computationally expensive on the scale
of the Web. In addition they need not be complete,
i.e., interesting structures could be left undiscovered.
The second issue is not necessarily a show-stopper,
as long as not too many communities are missed.
The complementary issue, ‘false positives’, can be
problematic. In contrast, our results below indicate
that we almost never find ‘coincidental’ false pos-
itives. For a survey of database techniques on the
Web and the relationships between them, see [11].

1.2. Strongly connected bipartite subgraphs and
cores

Websites that should be part of the same commu-
nity frequently do not reference one another. In well-

known and recognized communities, this happens at
times for competitive reasons and at others because
the sites do not share a point of view. Companies
competing in the same space, AT&T and Sprint for
instance, do not point to each other. Instances of the
second kind are pages on opposite sides of a thorny
social issue such as gun control or abortion rights. In
the case of emerging communities this happens for a
third, more mundane, reason. Even pages that would
otherwise point to one another frequently do not —
simply because their creators are not aware of each
others’ presence.

Linkage between these related pages can never-
theless be established by a different phenomenon that
occurs repeatedly: co-citation. For instance www.s
wim.org/church.html, www.kcm.co.kr/search/church
/korea.html, and www.cyberkorean.com/church all
contain numerous links to Korean churches (these
pages were unearthed by our trawling). Co-citation
is a concept which originated in the bibliometrics
literature (see for instance, [22]). The main idea is
that pages that are related are frequently referenced
together. This assertion is even more true on the
Web where linking is not only indicative of good
academic discourse, but is an essential navigational
element. In the AT&T=Sprint example, or in the case
of IBM and Microsoft, the corporate home pages
do not reference each other. On the other hand,
these pages are very frequently ‘co-cited.’ It is our
thesis that co-citation is not just a characteristic of
well-developed and explicitly known communities
but an early indicator of newly emerging communi-
ties. In other words, we can exploit co-citation in the
Web graph to extract all communities that have taken
shape on the Web, even before the participants have
realized that they have formed a community.

There is another property that distinguishes refer-
ences in the Web and is of interest to us here. Linkage
on the Web represents an implicit endorsement of the
document pointed to. While each link is not an en-
tirely reliable value judgment, the sum collection of
the links are a very reliable and accurate indicator of
the quality of the page. Several systems — e.g., HITS,
Google, and Clever — recognize and exploit this fact
for Web search. Several major portals also apparently
use linkage statics in their ranking functions because,
unlike text-only ranking functions, linkage statistics
are relatively harder to ‘spam’.

406

Thus, we are left with the following mathematical
version of the intuition we have developed above. Web
communities are characterized by dense directed bi-
partite subgraphs. A bipartite graph is a graph whose
node set can be partitioned into two sets, which we
denote F and C. Every directed edge in the graph is
directed from a node u in F to a node v in C. A bipar-
tite graph is dense if many of the possible edges be-
tween F and C are present. Without mathematically
pinning down the density, we proceed with the fol-
lowing hypothesis: the dense bipartite graphs that are
signatures of Web communities contain at least one
core, where a core is a complete bipartite subgraph
with at least i nodes from F and at least j nodes from
C (recall that a complete bipartite graph on node-sets
F;C contains all possible edges between a vertex of
F and a vertex of C). Note that we deviate from the
traditional definition in that we allow edges within F
or within C. For the present, we will leave the values
i; j unspecified. Thus, the core is a small (i; j)-sized
complete bipartite subgraph of the community. We
will find a community by finding its core, and then
use the core to find the rest of the community. The
second step — finding the community from its core
can be done, for instance, by using an algorithm de-
rived from the Clever algorithm. We will not describe
this latter step in detail here. We will instead focus the
rest of this paper on the more novel aspect, namely
algorithms for finding community cores efficiently
from the Web graph, and the potential pitfalls in this
process. Our algorithms make heavy use of many as-
pects of Web structure that emerged as we developed
our algorithms and system; we will explain these as
we proceed.

We first state here a fact about random bipar-
tite graphs. We then derive from it a less precise
hypothesis that, by our hypothesis, applies to Web
communities (which cannot really be modeled as
random graphs). We do this to focus on the qualita-
tive aspects of this imprecise hypothesis rather than
its specific quantitative parameterization.

Fact 1. Let B be a random bipartite graph with edges
directed from a set L of nodes to a set R of nodes,
with m random edges each placed between a vertex
of L and a vertex of R uniformly at random. Then
there exist i; j that are functions of (jLj; jRj;m) such
that with high probability, B contains i nodes from

L and j nodes from R forming a complete bipartite
subgraph.

The proof is a standard exercise in random graph
theory and is omitted; the details spelling out the
values of i and j , and ‘high probability’ can be
derived easily. For instance, it is easy to show that if
jLj D jRj D 10 and m D 50, then with probability
more than 0.99 we will have i and j at least 5. Thus,
even though we cannot argue about the distribution
of links in a Web community, we proceed with the
following hypothesis.

Hypothesis 1. A random large enough and dense
enough bipartite directed subgraph of the Web almost
surely has a core.

The most glaring imprecision in the hypothesis is
what is meant by a dense enough and large enough
random bipartite subgraph. Indeed, answering this
question precisely will require developing a random
graph model for the Web. The second source of
imprecision is the phrase ‘almost surely’. And fi-
nally we leave unspecified the appropriate values of
i and j . We state this hypothesis largely to moti-
vate finding large numbers of Web communities by
enumerating all cores in the Web graph; we use our
experiments below to validate this approach. Note
that a community may have multiple cores, a fact
that emerges in our experiments. Note also that the
cores we seek are directed — there is a set of i pages
all of which hyperlink to a set of j pages, while no
assumption is made of links out of the latter set of
j pages. Intuitively, the former are pages created by
members of the community, focusing on what they
believe are the most valuable pages for that commu-
nity (of which the core contains j). For this reason
we will refer to the i pages that contain the links as
fans, and the j pages that are referenced as centers
(as in community centers).

2. Web structure and modeling

In the course of designing an algorithm that trawls
the Web graph for community cores, we discovered
several interesting phenomena which also guided al-
gorithmic choices. We detail some of these in this sec-
tion. We begin with a description of our data source.

407

2.1. Data source and resources

Our data source is a copy of the Web from Alexa,
a company that archives the state of the internet. The
crawl is over a year and a half old, and consequently
somewhat out of date. However, for our purposes,
this is a very interesting data set because it allows
us to discover communities emerging on the Web a
year ago and then compare them against the state
of the Web today (when many of these communities
should be better developed). Indeed, one of the most
interesting consequences of our work is the inherent
resilience in the process: it is relatively easy to track
down today’s community from its fossil — the core
we extract from the year-and-a-half-old copy of the
Web — even though some of the pages in the core
may no longer exist. We will revisit this theme later
in the paper.

The raw Web crawl consisted of about 1 Terabyte
of Web data on tape. The data was text-only HTML
source and represented the content of over 200 million
Web pages, with the average page containing about
5 Kbytes of text. Compared to the current size of
the Web (see [3]) the volume of data is significantly
smaller. This difference, however, should not be an
impediment to implementing many of our methods
on the entire Web, as we will point out below. All our
experimentation was done on a single IBM PC with
an Intel 300 MHz Pentium II processor, with 512 MB
of memory, running Linux. The total running time of
our experiment was under two weeks.

2.2. Fans

The first step of the algorithm is to scan through
the data set and summarize the identities and content
of all potential fans. For this purpose, we must pin-
point a notion of a potential fan. We may view fans
as specialized hubs — extensive resource lists dis-
covered by algorithms such as HITS and Clever. We
looked at the outputs of over 500 good Clever search
results that were created during a series of taxonomy-
creation experiments. We analyzed the hubs in these
results, looking for a syntactic, but principled, notion
that characterizes good hubs. A reliable characteris-
tic of good hubs was that most contained many non-
nepotistic links to good resources. By non-nepotistic
links, we mean links to pages on other sites. Thus, we

chose the following syntactic definition for a potential
fan page: a potential fan page has links to at least 6
different Websites. For the purposes of this definition,
a Website is the first field of the URL. Of the 200
million original Web pages approximately 12%, i.e.,
about 24 million pages, were extracted from the tapes
as potential fan pages. For each of these 24 million
pages, we retained only the sequence of hyperlinks
occurring in that page, discarding all other informa-
tion. This is in keeping with our objective of using
purely link information in this experiment. One could
conjecture that content and text information could be
further used to identify interesting communities, fear-
ing that without content analysis many communities
suggested by the graph structure would turn out to
be coincidences. There are two reasons we have not
done so in the current experiment.
(1) We want to study how far one could go with

linkage information alone, since the efficiency
improvements from retaining only the link infor-
mation on pages is significant (and indeed makes
an experiment like ours feasible on the scale of
the entire Web).

(2) We began with the thesis that for moderate values
of i and j (say, in the range 3 to 9), most of the
cores identified by graph analysis alone would in
fact correspond to real communities rather than
coincidences; as our results below show, this
belief is amply vindicated in that almost none of
our cores is spurious.

Henceforth when we speak of our operations us-
ing fan pages, we will think of a fan page as a
sequence of links devoid of all other content. At any
point in our trawling process, the set of potential fans
remaining in contention implies a set of potential
centers remaining in contention: namely, those links
listed in the current set of potential fans. Folding
page-content into trawling is an interesting issue and
one which is the subject of ongoing research at the
Almaden Research Center.

2.3. Mirrors and shingles

Many existing communities are mirrored repeat-
edly, both in their fans and in their centers. To some
extent this is inevitable and is a testament to the
value of resource pages that bring together the pages
in a community. There are surprisingly many mir-

408

rors of many Yahoo! pages, not all of which are
owned by the many avatars of Yahoo. Another phe-
nomenon, observed previously by [6], is that content
on the Web is rather easy to copy and reproduce
with minor variations. Many pages are reproduced
in slightly modified forms (for instance, the claimed
author is different from one copy to another). Broder
et al. [6] propose a shingling method to identify and
eliminate such duplicates, which we adopt as well,
except that we only apply it to the sequence of links
in a page (rather than to the entire page, as they
do). The method constructs a number of local hashes
of the Web page and compares smallest few hash
values (called shingles) to detect duplication. In their
paper, Broder et al. [6] argue that if the hash func-
tion and the number of shingles are chosen carefully,
then with high probability, exact and almost-exact
duplicates are detected. On the other hand, two very
different pages are almost never accidentally accused
of duplication.

In our case, however, even approximate mirroring
that only preserves most of the links (say 90% of
them) can be fatal. A page that is approximately
mirrored say three times can produce a very large
spurious core, e.g., a .3; k/ core where k can be large
(here k would be the number of links preserved in
all the mirrorings). Even if, say, one in a hundred
of our potential fans were approximately duplicated
in this fashion, we would have as many spurious
communities as real ones.

Consequently, we choose a very aggressive mir-
ror-elimination strategy. The number of shingles we
maintain is rather small: only two per page. We also
use a relatively small local window (five links) over
which to compute the shingles. While these aggres-
sive choices for the shingle algorithm parameters can
and probably do result in a few distinct pages being
misidentified as mirrors, it detects almost all mirrors
and near mirrors reliably. Thus, we are able to effec-
tively deal with the problem posed by near mirrors
generating spurious communities.

Of the 24 million pages that were chosen as po-
tential fans, mirror elimination based on shingling
removed 60% of the pages (this refers to the number
of potential fans; the number of potential centers
remaining is roughly 30 times the number of po-
tential fans, at all stages). A natural question would
be whether the shingling strategy was overly ag-

gressive. To convince ourselves of this we examined
by hand a sample of the deleted pages and found
that in almost every case, the deleted page was in-
deed a mirror page. Indeed we found many of the
duplicates were due to idiosyncrasies in the crawl.
For instances, URLs such as http://foo.com/x/y/and
http://foo.com/x/y/../y/ (clearly the same) were
treated as distinct. Another problem was the plethora
of plagiarized Yahoo! pages. Many instances of Ya-
hoo! pages had as many as 50 copies. Here is an
instance of four pages in the crawl whose content is
almost the same.

http://www.sacher.com/¾schaller/shop/shop_mo.htm
http://www.assoft.co.at/¾schaller/shop/shop_mo.htm
http://www.technosert.co.at

/¾schaller/shop/shop_mo.htm
http://www.der-reitwagen.co.at

/¾schaller/shop/shop_mo.htm

Even after mirror deletion, one cannot hope (espe-
cially given the constraints of memory hierarchies)
to efficiently enumerate all cores using a classical
relational approach (as, say, an SQL statement in a
database, or its Web equivalent, WebSQL). If n were
to denote the number of pages remaining, and i were
the size of the core, this would lead to a running time
that grew roughly as ni , which is prohibitive for any i
larger than 1. It is therefore essential to better exploit
the detailed characteristics of the Web graph to prune
the data down, eliminating those potential fans that
can be proved not to belong to any community; we
begin describing this process now. Indeed, inferring
and understanding some of these characteristics is a
fascinating study of the Web graph of interest in its
own right.

2.4. In-degree distribution

Our first approach to trimming down the data
resulted from an analysis of the in-degrees of Web
pages. The distribution of page in-degrees has a
remarkably simple law, as can be seen in Fig. 1.

This chart includes pages that have in-degree at
most 410. For any integer k larger than 410, the
chance that a page has in-degree k is less than 1 in
a million. These unusually popular pages (such as
www.yahoo.com) with many potential fans pointing
to them have been excluded. The chart suggests a

409

Fig. 1. In-degree distribution.

simple relation between in-degree values and their
probability densities. Indeed, as can be seen from the
remarkably linear log–log plot, the slope of the curve
is close to 1=2. This allows us to state the following
empirical fact.

Empirical fact: The probability that a page has in-
degree i is roughly 1=i2.

The precise exponent is slightly larger than 2. For
our purposes, however, 2 is close enough. Also, by
elementary probability, we see that the chance that a
page has degree at least i is proportional to 1=i .

2.5. Pruning centers by in-degree

As we have argued earlier, known and established
communities typically contain relatively dense bipar-
tite cores. (Indeed, this is one of the reasons that
algorithms such as HITS and Clever work very well
on broad topic queries, for which there is a signifi-
cant Web presence in terms of number of pages that
address the topic.)

However, large and dense bipartite graphs can and
do contain many instances of the small cores that
we are looking for. This creates an implementation
problem: if an algorithm were to list all possible
cores in the Web graph, then we could be stuck in
a situation where most of the cores corresponded

to very ‘high-level’ communities (e.g., Physics) and
would leave us with a needle-in-the-haystack prob-
lem to find and distinguish those that were emerging
or new. Pruning by in-degree is a simple method
of addressing this potential problem. We delete all
pages that are very highly referenced on the Web,
such as the home pages of Web portals (e.g., Yahoo!
or Altavista). These pages are presumably referenced
for a variety of reasons not having to do with any
single emerging community, and hence can safely
be eliminated from further consideration. (On the
other hand if we were to retain them, we raise the
odds of discovering spurious ‘communities’ because
pages on various subjects may contain links to these
sites just for the creators’ convenience.) We therefore
eliminate (as potential centers) all pages that have an
in-degree greater than a carefully chosen threshold k.
The issue, then, is the particular choice of k.

We posit that pages listed in a Web directory such
as Yahoo! are relatively uninteresting from our point
of view. This is because these pages belong to com-
munities that are already developed and explicitly
known. We further note that directory services list-
ing explicitly known communities, like Yahoo!, list
about 10 million pages. Let us further approximate
by 400 million the order of magnitude of the number
of pages in the Web today. Thus, the chance that
a page is already known to be part of an explicitly
known community is about 1 in 40. From the em-
pirical fact, such a node would have in-degree 40 or
larger. The exact constants turn out not to be critical;
the calculation above shows that the correct value
is around 40. We conservatively set k to 50, and
prune all pages that have in-degree 50 or larger from
further consideration as centers.

3. Trawling algorithms and system

Thus far we have described several preliminary
processing steps on our data, along with some inter-
esting phenomena on degree distributions on the Web
graph. We now turn to the details of trawling this
‘cleaned up’ data for communities; our goal is to out-
put a non-overlapping maximal set of cores. The data
still has over two million potential fans remaining,
with over 60 million links to over 20 million potential
centers. Since we still have several million potential

410

fans, we still cannot afford an enumeration algorithm
of the form ‘for all subsets of i potential fans, and for
all subsets of j potential centers, check if a core is in-
duced’. We therefore resort to a number of additional
pruning algorithms that eliminate much of these data.
Simultaneously, we retain the property that pruned
nodes or links cannot be part of any yet-unidentified
core. After reducing our data by another order of mag-
nitude in this fashion, we resort to enumeration at the
very end.

A critical requirement of algorithms in this phase
is the following. The algorithms must be imple-
mentable as a small number of steps, where in each
step the data is processed in a stream from disk and
then stored back after processing onto disk. Main
memory is thus used very carefully. The only other
operation we employ is a sorting of the data set —
an efficient operation in most platforms.

3.1. Iterative pruning

When looking for .i; j/ cores, clearly any poten-
tial fan with outdegree smaller than j can be pruned
and the associated edges deleted from the graph.
Similarly, any potential center with in-degree smaller
than i can be pruned and the corresponding edges
deleted from the graph. This process can be done
iteratively: when a fan gets pruned then some of the
centers that it points to may have their in-degrees fall
below the threshold i and qualify for pruning as a
consequence. Similarly when a center gets pruned, a
fan that points to it could have its out-degree fall be-
low its threshold of j and qualify for pruning. While
there is an obvious way to do this kind of pruning
on small data sets, it fails when the data set becomes
large and does not fit into main memory. In our case,
the data set is too large to fit into main memory. We
represent each URL by a 64-bit hash value. (To avoid
collision we require about 60 bits.) Thus, each edge
in the Web graph will occupy 128 bits in storing a
(source page, destination page) pair. Our machines
have 512 MB of main memory. This allows us to
represent about 40 million edges in main memory,
which is more than an order of magnitude too small
if the experiment is scaled to the whole Web.

Because of this, it becomes necessary to design
pruning algorithms that efficiently stream the data
between secondary and main memory. Luckily, our

iterative pruning process is reducible to sorting re-
peatedly. We sort the edge list by source, then stream
through the data eliminating fans that have low out-
degree. We then sort the result by destination and
eliminate the centers that have low in-degree. We sort
by source again, and then again by destination and so
on until we reach a point when only few fans=cen-
ters are eliminated in each iteration. In fact it is not
necessary to repeatedly sort: it suffices to remember
and index in memory all the pruned vertices (or more
generally, if in each pass we only pruned as many ver-
tices as we could hold in main memory). We would
then have two data sets, containing identical data, ex-
cept that in one case the edges are sorted by source
and in the other they are sorted by destination. We
alternately scan over these data sets, identifying and
pruning pages that do not meet the in-degree or outde-
gree threshold. We hold and index the set of vertices
being pruned in each iteration in memory. This re-
sults in a significant improvement in execution time,
because there are only two calls to a sorting routine.

The fact that this form of pruning can be reduced
to a computation on a data stream and sorting is
significant. It would be impossible to do this prun-
ing using a method that required the indexing of
edges by source, by destination, or both. Such an
index would necessarily have to live on disk and
accesses to it could prove to be expensive due to
the non-locality of disk access. Designing a method
which streams data efficiently through main memory
is relatively simple in the case of iterative pruning.
It is considerably more challenging when the prun-
ing strategy becomes more sophisticated, as in the
case of inclusion–exclusion pruning, the strategy we
describe next.

3.2. Inclusion–exclusion pruning

The next pruning strategy — which we call
inclusion–exclusion pruning — has the following
useful property: at every step, we either eliminate a
page from contention, or we discover (and output)
an .i; j/ core. Hence the name inclusion–exclusion:
at each step we either ‘include’ a community or we
‘exclude’ a page from further contention (as either
a fan or as a center), by establishing that it cannot
be a part of any core. An important benefit of such
pruning is that every step represents useful progress,

411

either in discovering a community or in pruning the
data. Note again that the algorithm must be imple-
mentable without relying on holding all of the data
in main memory.

The fans (resp. centers) that we choose for
inclusion–exclusion pruning are those whose out-
degrees (resp. in-degrees) are equal to the threshold
j (resp. i). It is relatively easy to check if these
nodes are part of any .i; j/ core. Consider a fan x
with out-degree exactly j , and let N.x/ denote the
set of centers it points to. Then, x is in an .i; j/ core
if and only if there are i � 1 other fans all pointing
to each center in N.x/. For small values of i and j
and given an index on both fans and centers, we can
check this condition quite easily. The computation is
simply computing the size of the intersection of j
sets and checking if the cardinality is at least i . How
can we avoid having two indices in main memory?

First notice that we do not need simultaneous
access to both indices. The reason is that we can
first eliminate fans with out-degree j and then worry
about centers with in-degree i . That is, first, from
the edge list sorted by the source ID, we detect all
the fans with out-degree j . We output for each such
fan the set of j centers adjacent to it. We then use
an index on the destination ID to generate the set of
fans pointing to each of the j centers and to compute
the intersection of these sets.

A somewhat more careful investigation reveals
that all of these intersection computations can be
batched, and therefore, we do not require even one
index. From a linear scan of the edges sorted by
source find fans of out-degree exactly j . For as many
of the fans as will fit in memory, index edges sourced
at the fan by destination IDs. At this stage, we have
in memory an index by centers which for each center
contains fans adjacent to then which have out-degree
exactly j . Clearly this is a much smaller index:
it contains only edges that are adjacent to fans of
out-degree exactly j .

We will now maintain a set of vertices corre-
sponding to each fan whose edges we have indexed.
Recall that each retained fan x is adjacent to ex-
actly j centers. This allows us to consider a ‘dual’
condition equivalent to the condition above.

Fact 2. Let fc1; c2; : : :; c jg be the centers adjacent to
x . Let N.ct/ denote the neighborhood of ct , the set

of fans that point to ct . Then, x is part of a core if
and only if the intersection of the sets N.ct/ has size
at least i .

We will use this fact to determine which of the
fans that we have chosen qualify as part of a commu-
nity. If the fan qualifies, then we output the commu-
nity; otherwise we output nothing. In either case, we
can prune the fan. It turns out that the condition in
Fact 2 can be verified efficiently by batching many
fans together. This is exactly what we do.

We maintain a set S.x/ corresponding to each fan
x . The goal is that at the end of the computation, the
set corresponding to the fan x will be the intersection
of the sets N.ct/ specified in Fact 2, above. Stream
through the edges sorted by destination. For each
destination y check if it is in the small index. If so,
then there is at least one fan of outdegree exactly
j adjacent to it. If not, edges adjacent to y are
meaningless in the current pass. Assume, therefore
that y is in the index. For each degree j fan x
adjacent to y, intersect the set of fans adjacent to
y with the set corresponding to x . That is, S.x/ is
intersected with N.y/. Recall that since the edges
are sorted by destination, N.y/ is available as a
contiguous sequence in the scan.

At the end of this batched run, S.x/ is the set
required to verify Fact 2 for every x . For vertices x
whose sets, S.x/, have size at least i , the S.x/ corre-
sponds to the fans in the cores they belong in. In this
case, we can output the community immediately. In
either case, we can prune x . We can also (optionally)
prune all the fans that belong in some community
that we output. Thus, we get the following interest-
ing fact. Inclusion–exclusion pruning can be reduced
to two passes over the data set separated by a sort
operation.

The following statements apply to all the pruning
steps up until this point.

Theorem 1. Given any graph, no yet-unidentified
cores are eliminated by the above pruning steps.

Theorem 2. The running time of the above pruning
steps is linear in the size of the input plus the number
of communities produced in these steps.

Theorem 1 states that the set of cores generated
so far is complete in that no cores are missed. This

412

is not always a desirable property, especially if many
‘false positives’ are produced. However, our results
in Section 4 show that we do not suffer from this
problem. Theorem 2 shows that our algorithms up
until this point are output-sensitive: the running time
(besides being linear in the size of the input) grows
linearly in the size of the output. In other words, we
spend constant time per input item that we read, and
constant time per core we produce (if we view i and
j as constants independent of the size of the input).

3.3. Core generation and filtering

The inclusion–exclusion pruning step generates a
number of cores. Here is an instance of the set of
fans that form a community core. The community in
question turns out (upon inspection) to be Muslim
student organizations at U.S. universities:

http://chestnut.brown.edu
/Students/Muslim_Students/Org.html

http://wings.buffalo.edu
/sa/muslim/resources/msa.html

http://gopherhost.cc.utexas.edu
/students/msa/links/links.html

Table 1 shows the number of cores that were out-
put during inclusion–exclusion pruning, for various
values of i and j . Communities with any fixed value

Table 1
Number of cores

i j Nr. of cores Nr. of non-nepotistic cores

3 3 89565 38887
3 5 70168 30299
3 7 60614 26800
3 9 53567 24595
4 3 29769 11410
4 5 21598 12626
4 7 17754 10703
4 9 15258 9566
5 3 11438 7015
5 5 8062 4927
5 7 6626 4071
5 9 5684 3547
6 3 4854 2757
6 5 3196 1795
6 7 2549 1425
6 9 2141 1206

of j are largely disjoint due to the way the inclusion–
exclusion pruning is done. Thus, our trawling has ex-
tracted about 135 KB communities (summing up
communities with j D 3).

Next we filtered away nepotistic cores. A nepo-
tistic core is one where some of the fans in the
core come from the same Website. The underlying
principle is that if many of the fans in a core come
from the same Website, this may be an artificially
established community serving the ends (very likely
commercial) of a single entity, rather than a sponta-
neously emerging Web community. For this purpose,
the following definition of ‘same Website’ is used.
If the site contains at most three fields, for instance,
yahoo.com, or www.ibm.com then the site is left
as is. If the site has more than three fields, as in
www3.yahoo.co.uk, then the first field is dropped.
The last column in the table above represents the
number of non-nepotistic cores. As can be seen the
number of nepotistic cores is significant, but not
overwhelming — on our 18-month old crawl. About
half the cores pass the nepotism test.

We would expect the number of cores in the
current Web to be significantly higher.

3.4. Finishing it off

After the inclusion–exclusion pruning step, we
are left with about 5 million unpruned edges when
we are looking for (3; 3) cores (the case when the
largest number of unpruned edges is left). We can
now afford to enumerate the remaining cores using
existing techniques; we briefly describe this final
step now. We build cores iteratively and identify a
core by enumerating its fans. Fix a value for j , and
note that every proper subset of the fans in any .i; j/
core forms a core of smaller size. This fact, together
with the diminished size of the data set, allows us
to run the a priori algorithm of Agrawal and Srikant
[2], as follows.

Fix j . Start with all (1; j) cores. This is simply
the set of all vertices with outdegree at least j .
Now, construct all (2; j) cores by checking every
fan which also cites any center in a (1; j) core.
Compute all (3; j) cores likewise by checking every
fan which cites any center in a (2; j) core, and
so on. Fig. 2 plots the number of resulting cores
as a function of i and j , based on the subgraph

413

Fig. 2. Number of cores remaining after pruning.

remaining after the (3; 3) pruning step. Note that,
in contrast to the pruning algorithm, this algorithm
will output cores and all their subcores. We have
normalized so that the count of .i; j/ cores includes
only non-overlapping cores, but the .i; j/ cores may
overlap with the .i 0; j 0/ cores. The number of (3; 3)
cores is about 75 KB, and is an upper bound on the
total number of disjoint cores of size (3; 3) or greater
remaining after inclusion–exclusion pruning.

Curiously, the number (75 KB) is smaller than,
though comparable to, the number of cores found by
the inclusion–exclusion step (about 135 KB). Thus,
we note that there are approximately 200 KB po-
tential communities in our data set; in fact, as our
results in the next section show, it appears that virtu-
ally all of these cores correspond to real communities
(rather than coincidental occurrences of complete bi-
partite subgraphs). Given that the data set is about a
year and a half old, it seems safe to conjecture that
there are at least as many communities in the Web
today.

4. Evaluations of communities

In this section we describe our preliminary eval-
uations of the communities that have been trawled
by our system; as a first step, we rely on manual
inspection to study the communities that result. (In
the longer run we need a mechanized process for
dealing with over a hundred thousand communi-
ties. This raises significant challenges in information
retrieval research.) For this manual inspection, we

have picked a random sample of 400 cores (200
(3; 3) cores and 200 (3; 5) cores) from our list.

Fossilization. Given that we worked with an 18-
month old crawl, the first question we studied was
how many of the community cores that we had dis-
covered were recoverable in today’s Web. A fossil is
a community core not all of whose fan pages exist
on the Web today. To our surprise, many of the com-
munity cores were recoverable as communities in
today’s Web. Of the 400 communities in the random
sample, 122, or roughly 30% were fossilized. The
rest were still alive. Given prevailing estimates of the
half-life of Web pages (well under 6 months), we
found it surprising that fan pages corresponding to
community cores are significantly longer-lived. This
seems to be yet another indicator of the value of
resource collections in the Web and consequently,
the robustness of methods such as ours.

Communities. The next question was in studying
the communities themselves. To give a flavor of
communities we identify, we present the following
two examples. The first one deals with Japanese pop
singer Hekiru Shiina. The following are the fans of
this community:

http://awa.a-web.co.jp/¾buglin/shiina/link.html
http://hawk.ise.chuo-u.ac.jp/student/person/tshiozak

/hobby/heki/hekilink.html
http://noah.mtl.t.u-tokyo.ac.jp/¾msato

/hobby/hekiru.html

The next example deals with Australian fire
brigade services. The following are the fans of this
community:

http://maya.eagles.bbs.net.au/¾mp/aussie.html
http://homepage.midusa.net/¾timcorny/intrnatl.html
http://fsinfo.cs.uni-sb.de/¾pahu/links_australien.html

A more extensive annotated list of some the com-
munities that we find can be viewed at theory.stan
ford.edu/¾raghavan/comm.html

Reliability. The next question was what fraction of
the live cores were still cogent in that they covered a
single characterizable theme. We found the cores to be
surprisingly reliable. Of the 400 cores, there were 16
coincidental cores — a collection of fan pages with-
out any cogent theme unifying them. This amounts
to just 4% of our trawled cores. Given the scale of

414

Table 2
A community of Australian fire brigades

Authorities Hubs

NSW Rural Fire Service Internet Site New South Wales Fir...ial Australian Links
NSW Fire Brigades Feuerwehrlinks Australien
Sutherland Rural Fire Service FireNet Information Network
CFA: County Fire Authority The Cherrybrook Rur...re Brigade Home Page
“The National Cente...ted Children’s Ho... New South Wales Fir...ial Australian Links
CRAFTI Internet Connexions-INFO Fire Departments, F... Information Network
Welcome to Blackwoo... Fire Safety Serv... The Australian Firefighter Page
The World Famous Guestbook Server Kristiansand brannv...dens brannvesener...
Wilberforce County Fire Brigade Australian Fire Services Links
NEW SOUTH WALES FIR...ES 377 STATION The 911 F,P,M., Fir...mp; Canada A Section
Woronora Bushfire Brigade Feuerwehrlinks Australien
Mongarlowe Bush Fire – Home Page Sanctuary Point Rural Fire Brigade
Golden Square Fire Brigade Fire Trails “l...ghters around the...
FIREBREAK Home Page FireSafe – Fire and Safety Directory
Guises Creek Volunt...fficial Home Page... Kristiansand Firede...departments of th...

the Web and our usage of link information alone, one
might expect a far larger fraction of accidental com-
munities. It appears that our many careful pruning
steps paid off here. Given these sample results, one
can extrapolate that the fraction of fossils and coin-
cidences together account for less than 35% of the
cores that were trawled. In other words, we estimate
that we have extracted some 130 KB communities
that are alive and cogent in today’s Web.

Recoverability. The core is only part of the com-
munity. For communities that have not fossilized,
can we recover today’s community from the core
that we extracted? A method we use for this purpose
is to run the Clever search engine on the community
core, using the fans as exemplary hubs (and no text
query). For details on how this is done, see [9,16].
Table 2 shows the output of Clever (top 15 hubs and
authorities) run on one of our cores, which turns out
to be for Australian fire brigades. A more extensive
list can be found at theory.stanford.edu/¾raghavan/
brecca.html

Quality. How many of our communities are un-
known to explicit ontological efforts? We found that
of the sampled communities, 56% were not in Ya-
hoo! as reconstructed from our crawl and 29% are
not in Yahoo! today in any form whatsoever. (The
remaining are present in Yahoo! today, though in
many cases Yahoo! has only one or two URLs in its
listing whereas our process frequently yields many
more. We interpret this finding as a measure of re-

liability of the trawling process, namely, that many
of the communities that we had found emerging 18
months ago have now emerged. Also, none of the
trawled communities appears in less than the third
level of the Yahoo! hierarchy, with the average level
(amongst those present in Yahoo!) being about 4.5
and many communities that were as deep as 6 in
the current Yahoo! tree. We believe that trawling a
current copy of the Web will result in the discovery
of many more communities that will become explicit
in the future.

Open problems. The dominant open problems are
automatically extracting semantic information and
organizing the communities we trawl into useful
structure. Another interesting problem is to trawl
successive copies of the Web, tracking the sociology
of emerging communities.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J.
Weiner, The Lorel Query language for semistructured data,
International J. Digital Libraries, 1(1) (1997) 68–88.

[2] R. Agrawal and R. Srikanth, Fast algorithms for mining as-
sociation rules, in: Proc. VLDB, Santiago, Chile, September
1994.

[3] K. Bharat and A. Broder, A technique for measuring the
relative size and overlap of public Web search engines,
in: Proc. 7th Int. World Wide Web Conference, Brisbane,
Australia, Elsevier, Amsterdam, April 1998, pp. 379–388.

[4] K. Bharat and M. Henzinger, Improved algorithms for topic

415

distillation in hyperlinked environments, in: Proc. 21st SI-
GIR Conference, Melbourne, Australia, 1998.

[5] S. Brin and L. Page, The anatomy of a large scale hypertex-
tual web search engine, in: Proc. 7th Int. World Wide Web
Conference, Brisbane, Australia, April 1998, pp. 107–117.

[6] A. Broder, S. Glassman, M. Manasse and G. Zweig, Syn-
tactic clustering of the Web, in: Proc. 6th Int. World Wide
Web Conference, April 1997, pp. 391–404.

[7] J. Carriere and R. Kazman, WebQuery: searching and vi-
sualizing the Web through connectivity, in: Proc. 6th Int.
World Wide Web Conference, 1997.

[8] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Ragha-
van and S. Rajagopalan, Automatic resource compilation by
analyzing hyperlink structure and associated text, in: Proc.
7th World-Wide Web Conference, 1998, pp. 65–74.

[9] S. Chakrabarti, B. Dom, D. Gibson, S.R. Kumar, P. Ragha-
van, S. Rajagopalan and A. Tomkins, Experiments in topic
distillation, in: Proc. ACM SIGIR Workshop on Hypertext
Information Retrieval on the Web, Melbourne, Australia,
1998.

[10] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas
and R.A. Harshman, Indexing by latent semantic analysis,
Journal of the Society for Information Science, 41(6), 391–
407.

[11] D. Florescu, A. Levy, A. Mendelzon, Database techniques
for the World-Wide Web: a survey, SIGMOD Rec. 27(3)
(1998) 59–74.

[12] D. Gibson, J. Kleinberg, P. Raghavan, Inferring Web com-
munities from link topology, in: Proc. 9th ACM Conf. on
Hypertext and Hypermedia, 1998.

[13] M. Henzinger, P. and S. Rajagopalan, Computing on data
streams, AMS–DIMACS series, Special Issue on Comput-
ing on Very Large Datasets, also Technical Note 1998-011,
Digital Equipment Corporation Systems Research Center,
Palo Alto, CA, May 1998.

[14] J. Kleinberg, Authoritative sources in a hyperlinked en-
vironment, in: Proc. 9th ACM–SIAM Symp. on Discrete
Algorithms (SODA), January 1998.

[15] D. Konopnicki and O. Shmueli, Information gathering on
the World Wide Web: the W3QL query language and the
W3QS system, Transactions on Database Systems, Septem-
ber 1998.

[16] R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins,
Human effort in semi-automated taxonomy construction,
submitted for publication.

[17] L.V.S. Lakshmanan, F. Sadri and I.N. Subramanian, A
declarative approach to querying and restructuring the
World-Wide-Web, in: Post-ICDE Workshop on Research Is-
sues in Data Engineering (RIDE’96), New Orleans, Febru-
ary 1996.

[18] A. Mendelzon, G. Mihaila, T. Milo, Querying the World
Wide Web, Journal of Digital Libraries 1(1) (1997) 68–88.

[19] P. Pirolli, J. Pitkow and R. Rao, Silk from a sow’s ear:
extracting usable structures from the Web, in: Proc. ACM
SIGCHI Conf. on Human Factors in Computing, 1996.

[20] E. Spertus, ParaSite: mining structural information on the
Web, in: Proc. 6th Int. World Wide Web Conference, 1997.

[21] D. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S.
Nestorov and A. Rosenthal, Query Flocks: a generalization
of association rule mining, in: Proc. 1998 ACM SIGMOD
Conf. on Management of Data, 1998.

[22] H.D. White and K.W. McCain, Bibliometrics, in: Annual
Review of Information Science and Technology, Elsevier,
1989, pp. 119–186.

Ravi Kumar received his Ph.D. in Computer Science from Cor-
nell University in 1998 and since then he has been a Research
Staff Member at the IBM Almaden Research Center. His re-
search interests include randomization, complexity theory, and
information processing.

Prabhakar Raghavan received his
Ph.D. in Computer Science from the
University of California, Berkeley in
1986. Since then he has been a Re-
search Staff Member at IBM Re-
search, first at the Thomas J. Wat-
son Research Center in Yorktown
Heights, NY, and since 1995 at the
Almaden Research Center in San
Jose, California. He is also a Con-
sulting Professor at the Computer
Science Department, Stanford Uni-

versity. His research interests include algorithms, randomization,
information retrieval and optimization. He is the co-author of a
book Randomized Algorithms and numerous technical papers. He
has served on the editorial boards and program committees of a
number of journals and conferences.

Sridhar Rajagopalan has received
a B.Tech. from the Indian Institute
of Technology, Delhi, in 1989 and a
Ph.D. from the University of Califor-
nia, Berkeley in 1994. He spent two
years as a DIMACS postdoctoral fel-
low at Princeton University. He is
now a Research Staff Member at the
IBM Almaden Research Center. His
research interests include algorithms
and optimization, randomization, in-
formation and coding theory and in-
formation retrieval.

Andrew Tomkins received his BSc
in mathematics and computer sci-
ence from MIT in 1989, and his
Ph.D. from CMU in 1997. He now
works at the IBM Almaden Research
Center in the Principles and Method-
ologies group. His research inter-
ests include algorithms, particularly
online algorithms, disk scheduling
and prefetching, pen computing and
OCR, and the World Wide Web.

