
ELSEVIER

Formsheets and the XML forms language

Anders Kristensen *

HP Labs (Bristol), Filton Road, Bristol, BS34 8QZ, UK

Abstract

This paper presents XForm — a proposal for a general and powerful mechanism for handling forms in XML. XForm
defines form — related constructs independent of any particular XML language and set of form controls. It defines the
notion of formsheets as a mechanism for computing form values on the client, form values being arbitrary, typed XML
documents. This enables a symmetrical exchange of data between clients and servers which is useful for example for
database and workflow applications. Formsheets can be written in a variety of languages — we argue that the document
transformation capabilities of XSL stylesheets make them an elegant choice. 1999 Published by Elsevier Science B.V.
All rights reserved.

Keywords: XML; Form; Formsheet; XForm; XSL

1. Introduction

HTML defines a number of elements which taken
together allows authors to construct forms — ele-
ments which can be used to solicit input from a
user [13]. HTML forms have proven themselves ex-
tremely useful and after hyperlinking must be said
to be the most important way of performing user
interaction on the Web. With XML becoming the
standard format for data exchanged between applica-
tions on the Web it is interesting to reconsider what
forms are and how they might work in the context
of XML [6]. This paper proposes a notion of XML
forms which is quite different from HTML forms
which we shall call XForms.

Ł E-mail: ak@hplb.hpl.hp.com

1.1. HTML forms

The following brief description of HTML forms
is largely taken from [13]. A form in HTML is
an instance of the form element. It is a part of a
document which contains normal markup as well as
a set of special elements called form controls (text
fields, checkboxes, menus, etc.). Users interact with
the form through its controls, completing the form
before submitting it to a remote entity, typically a
Web server, for processing.

Controls have a name, an initial value, and a
current value, each of which is a text string. The
name is given by the name attribute while the ini-
tial value of most controls may be specified with
the control element’s value attribute. The current
value is first set to that of the initial value but may
thereafter be modified through user interaction and
scripts. The form value or form data set is a set of
name-value pairs corresponding to the names and
current values of some of its controls. This is what

 1999 Published by Elsevier Science B.V. All rights reserved.

112

is sent to the server when a form is submitted for
processing.

1.2. XML forms

Where HTML defines a specific vocabulary for
forms, e.g. form, input, button, etc. elements,
XML is a general syntax — a language for defining
languages — and as such doesn’t have a built-in
notion of forms. As XML works at a different level
than HTML it is not surprising to find that XML
forms should operate differently from HTML forms,
in particular it would be nice if the abstract notion
of what a form is could be made to apply to differ-
ent concrete applications of XML. The forthcoming
XML based version of HTML [12] is an impor-
tant such application but by no means not the only
one.

The proposal in this paper is to define a generic
mechanism for how to do forms in XML. There are
several parts to the proposal:
Form recognition:

Has to do with how form elements are recognized.
We define the syntax used to assert form existence
and to describe form characteristics in documents.
This mechanism is similar in style to that used by
the XML Linking Language [10] in that it doesn’t
define an XML language per se but rather syntax
which can be used in conjunction with a variety of
languages (in SGML parlance the form definition
is like an architectural form).

Form values:
Form values are themselves XML data sets. In the
simplest case a form value is just an XML en-
coded set of name-value pairs. This differs from
HTML form data sets mainly in allowing for form
fields with structured values. More interesting, we
introduce the notion of formsheets to denote the
specification of how to construct the value of a
form upon submission. The formsheet has access
to the document and form state, or current value,
and controls the construction of the correspond-
ing form value. The proposal allows for multiple
formsheet languages to be used. We show how
the document transformation capabilities of the
Extensible Stylesheet Language (XSL) makes it
a prime candidate [7], but using traditional pro-
gramming languages is also an option.

Form submission:
Works much like for HTML forms, but is defined
in terms of XLink and hence is more general.

Typed input fields:
It would be very useful for forms to be more
intelligent about the kind of data they are solicit-
ing. We discuss what sort of typing system could
be associated with form input fields, and present
the XForm use of XML namespaces to allow
user agents to provide a form with client-specific
default values.
The XForms proposal doesn’t define the actual

elements making up a form — the form controls
— neither does it specify the user interaction be-
haviour and semantics of such elements. This is left
to XForm compatible XML languages. Examples are
given in a (hypothetical) ‘wellformed HTML’ appli-
cation of XML, using the HTML form elements but
in an XForm compliant manner.

We believe that specifying the core properties
of forms independently of specific data and layout
elements is a big advantage as it means that the
same basic mechanism can be used regardless of the
exact nature of the XML language at hand. This is
analagous to how linking, stylesheets, and scripting
are defined independently of the languages that use
them, and this approach generally leads to better and
more modular standards.

The rest of this paper is organized as follows. The
XForm subjects mentioned above: form recognition,
data set construction, submission, and typed form
controls, are discussed in sections Sections 2–5.
Section 6 shows how workflow-like applications can
be built using XForms and other XML technologies,
and Section 7 discusses related work.

2. Form recognition

Analogous to the workings of XLink, the exis-
tence of a form is asserted by the presence of a form
element. An XForm aware processor recognizes an
element as asserting the existence of a form, by look-
ing for the presence of a designated attribute named
xf:form, where xf denotes the XForm namespace
identified in this paper by the URL http://www.
w3.org/TR/XForm (XML namespaces are defined
in [5]). Any element can be used to assert form pres-

113

ence by including this attribute. However, a particu-
lar XForms compliant XML language may choose to
single out certain elements as being form elements,
e.g. by defining fixed or default attribute values in
a document type definition, thus avoiding having to
list them in document instances themselves.

The XForm attributes are defined as a set of
parameter entities which can be included in custom
DTDs:

<!ENTITY % xform-core.att
"form CDATA #REQUIRED
attributes CDAT #IMPLIED"

>

The xf:form attribute has three defined values:
global: indicates that the element is a form element

and that the form value is computed by executing
a formsheet on the entire document at the time of
submission.

scoped: also indicates presence of a form, but one
for which the value is computed using the form
element as the root, i.e. rather than executing the
formsheet on the whole document it is executed
only on the form element. This makes for simpler
formsheets and corresponds to how HTML forms
work.

submit: this value is used to signal that the ele-
ment acts as an implicit reference to a contain-
ing scoped form element. Activating the element
implies submitting the corresponding enclosing
form.
So the difference between scoped and global

forms is that the former gets its value only from
descendant elements and its own attributes whereas
the entire document can contribute to the value of
the latter. Submit elements are allowed only within
a lexically enclosing scoped form element and its
effect is to trigger submission of that enclosing form.
It is provided primarily as a mechanism for enabling
a modular XML based version of HTML to be
defined to be in conformance with XForms.

The typical use of forms as we know them from
HTML is to gather input from a user, submit it to a
server, and getting a reply back with a response doc-
ument. In other words a form behaves exactly like a
hyperlink except that it allows for the collection and
submission of data from the user agent, and it allows
for the use of HTTP request methods other than GET

[9]. Hence we define a form to be an XML link with
additional attributes specifying form-specific proper-
ties. In XLink terminology forms are usually inline
links, i.e. the form element serves as one of its own
resources (as does both links and forms in HTML),
but we don’t rule out the use of out-of-line forms.
Similarly forms can be either simple or extended
links.

The HTML form element corresponds to a sim-
ple, inline link. Allowing forms to be extended links
permits functionality such as multi-ended links with
additional information such as titles and roles. This
enriches the notion of forms but has little impact on
how they are defined or how they operate. Hence this
is not discussed further.

2.1. Attribute remapping

Problems may occur with attribute names as
XForm is applied to existing XML languages. An
XForm compliant DTD may choose to remap XForm
attribute names in the manner of XLink. The attribute
xf:attributes consists of an even number of to-
kens. This list is interpreted as a set of pairs where
the first element is the name of an XForms attribute
and the second is the name it is mapped to. For
example, to map action to link one would have:

<!ATTLIST form
xf:form CDATA #FIXED "scoped"
xf:attributes CDATA #FIXED "action

link">

3. Constructing form values

When submitting a form to a processing agent the
user agent must first build the form value. XForm
values are either sets of name-value pairs in some
representation or they are arbitrary XML documents
constructed by a formsheet. For name-value data
sets we allow the representations defined for use in
HTML and add an XML encoding. The second class
of form values is much more general and flexible,
and can be used to construct form values in any
XML language.

Form value construction is effected by the follow-
ing form element attributes:

114

<!ENTITY % xform-value.att
"enctype CDATA #IMPLIED
charset CDATA #IMPLIED
formsheet CDATA #IMPLIED
form-lang CDATA #IMPLIED
result-ns CDATA #IMPLIED"

>

The enctype attribute specifies the MIME type
of the form data set. For MIME-like transport proto-
cols, this will appear in the Content-Type header
of the form submission. If the formsheet attribute
is not specified form value construction depends
only on the enctype attribute, which MUST then
be defined and take on one of the following defined
values:
ž application/x-www-form-urlencoded
ž multipart/form-data
ž text/xml
ž application/xml

The first two are as defined for use in HTML
[13,11] and the xml variants are described below.

3.1. Form values in a generic XML encoding

The MIME types text/xml and applica-
tion/xml are defined as generic types for carrying
XML encoded data [14]. The application subtype
is defined to overcome constraints placed on char-
acter set encodings for text top-level MIME types.
The two types are otherwise identical.

When a form doesn’t specify a formsheet the
corresponding data set is a set of name-value pairs.
When enctype is one of the two xml subtypes this
set is represented as a map element which consists of
a sequence of named item elements, each of which
represents a single form field:

XML DTD for encoding of name-value pairs
<!ELEMENT map (item*)>
<!ELEMENT item ANY>
<!ATTLIST item name CDATA #REQUIRED>
<!ATTLIST item href CDATA #IMPLIED>
<!ATTLIST item type CDATA #IMPLIED>

The name of the form field is given by the manda-
tory name attribute of item elements. The value of a
form field is either available ‘inline’ as the contents
of the corresponding item element or, if the href
attribute is defined, ‘out-of-line’ as the contents of
the resource identified by that URI. The resource
may be transported as part of the same data unit, e.g.
as a separate MIME bodypart, or may be remote.

Map items are considered unordered and there is
no requirement that they have unique names. We shall
refer to such data sets as being XForm-map encoded.
This DTD has an XML namespace identified by the
URL http://www.ietf.org/XML/NS/map.

An HTML form with input fields for name, tel, and
email might then result in a XForm-map value of:

<?xml version="1.0"?>
<map xmlns="http://www.ietf.org/

XML/NS/map">
<item name="name">Joe Bloggs</item>
<item name="tel">+1-222-333-4444</item>
<item name="email">joe@example.com
</item>
</map>

The XForm charset attribute specifies the char-
acter set used in the XML encoded ‘document’ but
field values can contain any characters whatsoever
as long as the generating user agent obeys standard
XML encoding rules.

When carried over a MIME-like transport, e.g.
HTTP or Internet email, the Content-Type header
field takes the value of the forms enctype attribute.
When used with HTTP XForm-map encoded data
sets are always carried in the request body, i.e.
method="GET" which places data in the request-
URI is not allowed.

3.1.1. Structured values
Field values are not limited to being simple text

strings but can be any arbitrarily complex, but well-
formed, XML structure. The following data set con-
tains an XML encoded digital business card [8]
together with other data items, all of which possibly
originate from an online form:

<?xml version="1.0" encoding="utf-8"?>
<xm:map xmlns:xm="http://www.ietf.org/XML/NS/map"

xmlns:vc="http://www.ietf.org/XML/NS/vCard">

115

<item name="vcard">
<vc:vCard version="3.0">

<fn>Joe Bloggs</fn>
<n><family>Bloggs</family><given>Joe</given></n>
<tel>+1-22-333-4444</tel>
<email>bloggs@example.com</email>

</vc:vCard>
</item>
<item name="notify">yes</item>
<item name="org-type">Software Development</item>
<item name="heard-of">From a friend.</item>

</xm:map>

When a map associates a name with a value which
is itself an XML element this element may be typed
by giving it an XML namespace attribute. The vCard
namespace identifier used in this example is fictional
— none is currently specified. Namespaces are more
suitable as a typing mechanism than DTDs or formal
public identifiers as they were designed to apply to
individual elements of a larger XML document, not
necessarily to the document as a whole.

3.2. Constructing form values using formsheets

The encoding schemes discussed above are pro-
vided primarily for simplicity and backwards com-
patibility with HTML forms. The ‘native’ XForms
method of constructing form values is the much more
general idea of using formsheets. A formsheet spec-
ifies how to transform the source document into a
form value. It is denoted by the formsheet attribute
which is a URL. The form-lang attribute specifies
the MIME type of the formsheet language and can
be omitted when it can be inferred from the context,
e.g. from an HTTP Content-Type header field.

The major advantage of formsheets is that they

allow us to construct the form value as being any
sort of XML document. This means it becomes pos-
sible to submit typed data rather than using ‘stupid’,
generic encodings of form values. The typing mech-
anism used is that of MIME and XML namespaces.
Form data is assigned a namespace identifier by the
generating formsheet and the MIME type is given in
the enctype attribute.

Fig. 1 illustrates how formsheets would typically
be used in Web applications.

The client retrieves an XML document from a
Web server and has it rendered using a stylesheet.
The document contains a number of form input el-
ements whose values changes in response to user
input. When the form is submitted the formsheet ex-
ecutes on the ‘current value’ of the source document.
This results in a ‘data’ XML document which is then
submitted to the server.

In the situation where a stylesheet has been ap-
plied to the original document in order to construct a
renderable XML flow-object tree (as is the case for
XSL stylesheets), the formsheet operates on the for-
matting object tree rather than the original tree. This
is so because form controls wouldn’t necessarily be

Fig. 1. Typical use of formsheets to produce XML form data.

116

present in the original document, but would often be
added by the XSL tree transformation step. This is
not an issue with stylesheet languages such as CSS
which doesn’t have transformational capabilites.

3.2.1. Example: using XSL as the formsheet
language

The following example illustrates form value con-
struction and submission behaviour for forms with
formsheets expressed in XSL. XSL consists of two
parts: a general-purpose transformation language

which is used to map an XML source document into
an XML target document, and a formatting vocabu-
lary — itself an XML language — which is used to vi-
sually render a document. We use the transformation
part to transform a document containing an XForm
into the data document. The elements of the source
document that contributes to the form data document
are, by definition, the forms set of controls.

Suppose a server wishes to prompt a client for a
user ID and a password. It can do this by using an
HTML like form:

<form xf:form="scoped" action="/cgi-bin/logon" method="post"
enctype="text/x-userid"
formsheet="userid.xfl"
form-lang="text/xsl">

User ID: <input type="text" name="userid"/>

Password: <input type="text" name="passwd"/>

<button xf:form="submit">

</form>

Suppose we want to generate form data sets of the form:

<user>
<id>aladdin</id>
<password>open sesame</password>

</user>

The “userid.xfl” XSL formsheet could then be defined as follows (boldface text is passed through to the
output uninterpreted by the XSL transformation engine):

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<user>

<id>
<xsl:value-of
expr="/form/input[attribute(name)=’userid’]/attribute(value)"/>

</id>
<password>
<xsl:value-of
expr="/form/input[attribute(name)=’passwd’]/attribute(value)"/>

</password>
</user>

</xsl:template>
</xsl:stylesheet>

This XSL formsheet consists of a single tem-
plate rule whose pattern matches the form element
of the source document. The result is the contents

of the template element with the xsl:value-of
elements substituted for the current values of the
userid and passwd input fields. The form value is

117

submitted with an HTTP Content-Type header of
text/x-userid. The XML form data may have a
namespace identifier associated with it, although in
this case it doesn’t.

If for whatever reason we wanted the form value
to be encoded as:

<user id="aladdin"
password="open sesame"/>

doing so would be a simple matter of changing the
userid.xfl formsheet. No changes are needed for
the document itself.

When, as in this example, the form is declared
to be scoped, the formsheet executes on the form
element only, i.e. for the purpose of computing the
form value this element is the document root. In con-
trast forms declared global executes on the whole
document. This reflects the requirement that scoped
forms contain all its constituent controls.

As is the case for stylesheets formsheets will typi-
cally be held as complete resources separate from the
XML data they are applied to, but may also be em-
bedded directly in documents. Embedded formsheets
would have an ID attribute and would be referenced
from form elements using ‘#’ fragment identifiers in
the href URL.

3.2.2. Using JavaScript as the formsheet language
An obvious alternative to using XSL transforma-

tions for computing form values is to use a scripting
language together with the Document Object Model
[1]. JavaScript, for example, is popular and is often
present in Web user agents. Which language is pre-
ferred is largely a matter of taste. XSL is designed
to do XML to XML conversions and hence is quite
elegant for this type of application, whereas scripting
languages are computationally complete, i.e. more
powerful, and has the larger number of devotees at
this time.

3.2.3. Benefits of formsheets
Using formsheets to control the encoding of form

values has some significant benefits over the simple
name-value data sets of HTML.

3.2.4. Symmetry
With HTML based Web applications servers send

data to clients in HTML pages which contain both

semantic and presentational markup. Clients passes
form data to servers either as URL-encoded strings in
the request URI or in the body of HTTP requests or
as a MIME encoded multipart. With XML and XSL it
is now possible for the server to send XML encoded
data to the client without any presentational markup.
XForms allows us to use the same data encoding to
be used in the other direction — from client to server.
What’s more the data is typed using MIME media
types and XML namespace information. A client can
edit a database table record by record and have data
shipped in identical formats in both directions.

Being able to pass data around using a single
(semantic) encoding is not just a theoretical nicety, it
means that we don’t have to rely on special-purpose
server-side processing in the form of CGI programs
to make sense of the data. Standard components
can make sense of it a priori. This makes it easier to
string together applications (Web based or otherwise)
as the data is self-describing. In a sense it helps dis-
solve the client-server distinction as content can flow
in both directions using identical representations.

3.2.5. Generality
Formsheets operate on the source XML document

and can construct arbitrary data sets. The gener-
ality of formsheets means that it is possible (and
even straightforward) to construct a formsheet that
performs the task of encoding the value of a form
using the XForm-map encoding. In other words, the
formsheet mechanism has the appealing property of
having this other form data set encoding as a spe-
cial case and the XForm-map representation can be
formally defined as a specific XSL formsheet.

The power of formsheets doesn’t come for free.
Writing XSL transformation scripts is not trivial and
it is not realistic to expect everyone to master it. The
definition of form elements in a specific XML lan-
guage might therefore choose to define the formsheet
to have some default or fixed value.

4. Form submission

As in HTML a constructed form value is submit-
ted to the processing agent using the protocol defined
by the method attribute. The action attribute is the
same as the href attribute in XLink and is the URI of

118

the server side resource to which the form value gets
submitted.

<!ENTITY % xform-submission.att
"action CDATA #IMPLIED
method CDATA ’post’"

>

5. Typed form controls

It is desirable to support some sort of typed data
entry, i.e. to be able to specify certain types of con-
straints on data to be entered into forms. This would
have at least two applications: it would allow user
agents (UA) to check the validity of data entered be-
fore submitting it to a server, thus providing immedi-
ate feedback and generating less network traffic, and
secondly it would potentially enable the UA to fill in
known values automatically. A good example of this,
as anyone who has spent much time on the Web will
testify to, is name and address information prompted
for by many Web sites as part of a registration pro-
cedure. Rather than having to repeatedly type in this
information it would be convenient if browsers stored
it and simply filled in the right form fields with this
information as the default value, without ever sub-
mitting anything without explicit consent, of course,
and only for form controls without a default value of
their own. This is maybe particularly useful for in-
formation which is not easily entered via a keyboard,
such as base64 encoded digital signatures or images;
vCards, for example, optionally carries photos.

These two applications may require different
kinds of typing mechanism. The former is much
like types found in programming languages (strings,
integers, booleans, etc.). Checking conformance to
such datatypes could be done using scripting lan-

guages in conjunction with forms but relying on
procedural verification for a problem that essentially
calls for a declarative approach is not very elegant.
Also it doesn’t allow UAs to use specialized user
interfaces for types such as dates.

The approach taken in XForm is to use the
datatypes specified in the Document Content De-
scription framework for denoting ‘basic’ datatypes
[4]. The DCD also allows constraints like maximum
and minimum values to be specified. The following
is an example of an input field using the DCD dt at-
tribute (short for datatype) for requesting an integer
value between 0 and 100:

<input name="interest" DCD:dt="int"
DCD:min="0" DCD:max="100" />

The other application — filling in default values
for frequently used data — must in some way deal
with application semantics. Again we use names-
paces, but now rather than referring to datatypes
defined by a single XML language we need to be
able to refer to elements of any language. We define
an XForm dt attribute for this purpose. The value
of this attribute consists of a namespace identifier
followed by the name of an element in the corre-
sponding XML language:

<!ENTITY % xform-types.att
"dt CDATA #IMPLIED"

>

So to continue the example of a server soliciting
contact information from a UA, we note that dig-
ital business card information is addressed by the
vCard specification which has defined an XML en-
coding [8]. A form requesting individual elements of
a vCard structure might look like:

<h:html xmlns:h="http://www.w3.org/TR/REC-html40"
xmlns:xf="http://www.w3.org/TR/XForm"
xmlns:vc="http://www.ietf.org/Schemas/XML/vCard">

<body>
<form xf:form="scoped" action="/cgi-bin/vCard" method="post">

<input name="firstname" xf:dt="vc:given"/>
<input name="lastname" xf:dt="vc:family"/>
<input name="tel" xf:dt="vc:tel" vc:tel.type="WORK"/>
...

119

</form>
</body>

</h:html>

while a form prompting for an entire vCard might look like this:

<form xf:form="scoped" action="/cgi-bin/payment" method="post">
<input name="person" xf:dt="vc:vCard"/>
<input name="credit-card" type="text"/>
<input name="exp-mnth" DCD:dt="int" min="1" max="12">
<input name="exp-year" DCD:dt="int" min="1998" max="2010">
...

</form>

The former example is fairly simple to deal with
for a UA as the specified datatypes, i.e. the given,
family, and tel vCard elements, are defined to con-
tain flat textual data only, i.e. they cannot have child
elements of their own. This means that a UA which
‘knows about’ vCards and is configured with vCard
information for its user can initialize those form fields
with the appropriate values, while UAs which doesn’t
know about vCards will just ignore the dt datatype
specifications and thus degrade gracefully to their
usual untyped behaviour. Note that the form author
may include further attributes from the target datatype
namespace. An example of this is the vc:tel.type
attribute in the example. Within a tel element of a
vCard the tel.type attribute further qualifies the
content of that element. The UA may wish to take
notice of such extra information but the semantics
of these attributes are, of course, determined by the
target datatype, not the XForm specification.

In the case where the form is requesting a com-
plete vCard or any other element with its own in-
ternal structure, there is no simple way to degrade
service gracefully in case the UA doesn’t know the
specified type, and ‘knowing’ the type may involve
writing custom code to handle the user-interface for
forms requesting those datatypes anyway, and so is
more work. One idea would be to use the namespace
identifier of unknown datatypes to attempt to retrieve
a DTD or a DCD which could then be interpreted
to construct a UI which would allow editing com-
plex structures of that type. Another idea would be
to define alternative input elements for UAs which
does not support a particular datatype (in the style of
the HTML NOFRAME element for use by UAs not

supporting frames). Neither of these ideas seem very
attractive and it may be better to rule out the use of
structured datatypes, at least initially.

6. Workflow applications

The generality of formsheets means we have a
lot of flexibility in how form values are constructed.
In particular it is possible to reconstruct the origi-
nal document completely or partially. This has some
interesting and maybe surprising applications. One
such application area is workflow-like messaging
systems. Consider the following scenario.

Jack composes a memo and wants to send it to a
number of people in turn. Each recipient gets to read
it, add comments, and forward it to the next person
in the chain. This can be accomplished using XForms
in an XML document representing the memo. The
memo has some text (plain or marked up) represent-
ing the actual message content. In addition it has a list
of recipient names and email addresses and a list of
comments made so far together with the names of the
persons making them. Fig. 2 shows the XML encoded
memo as it might look by the time it reaches Joe.

Joe’s user agent will render the memo according
to the stylesheet referenced in the document. It will
display the title, author, and to elements along
with the body and existing comments, and will add
a form element at the bottom of the page where Joe
can add his own comments. The action attribute
of the form element contains a mailto URL which
is the email address of the next recipient (Ann in
this case). The formsheet associated with the form

120

<?xml version=“1.0”?>
<?xml:stylesheet type=“text/xsl”

href=“http://example.com/workflow/memo.xsl”?>
<memo xmlns=“http://example.com/workflow/memo.dtd”>

<head>
<title>My Beautiful Memo</title>
<author>Jack</author>
<recipients>

<to>ed@example.com</to>
<to current=“true”>joe@example.com</to>
<to>ann@example.com</to>
<to>jack@example.com</to>

</recipients>
</head>

<body> This is the body of the text. This is what the recipients will see in
turn and have a chance to add their comments to. A comment in this example is
some unformatted text along with an identification of who made the
comment.</body>

<comments>
<comment by=“ed@example.com”>This is really good, Jack!</comment>

</comments>
</memo>

Fig. 2. The memo document by the time it reaches Joe.

reconstructs the original structure shown in Fig. 2,
only now marked with a new ‘current’ recipient and
with an additional comment element. Form submis-
sion in this case means emailing the memo to the
next recipient in the list. As Jack is himself the last
recipient the memo will end up with him.

This example can be extended in a variety of
ways. For example, the document could be an ac-
quisition form retrieved from a Web server with a
bunch of information to be filled out and a link
for submitting it. When the submit link is traversed
the document is send to a list of managers in turn
for them to add comments and their (authenticated)
sign-off. When the last signature has been added
the request goes to the purchasing department and
from there to an online order tracking system. In this
example the formsheet may change underway, i.e. at
some point the formsheet used to transition to the
next step generates a document which will contain a
form which uses a different formsheet.

All this can be achieved using just standard XML
technologies: XML, XLink, XSL, and XForm to-
gether with standard transports such as HTTP and

email. The construction of the formsheets that ac-
complishes it is not trivial but not hopelessly com-
plicated either. Luckily it is not something everyone
would have to do. Standard communication patterns
like the ones above can be codified once and for all,
but it’s worth noting that as long as user agents im-
plement the standard XML technologies listed above
they will be able to take part in any new ‘communi-
cation pattern’ of this sort that anyone can come up
with.

7. Related work

7.1. HTML

Earlier sections have already discussed some of
the differences between HTML forms and XForms,
the most important ones being the ‘computability’
and typing of XForm values. Here are some more.
Decoupling forms from form controls:

HTML defines a set of form controls. These are
the UI elements (widgets) which interacts with the

121

user in order to accept values. Hence form con-
trols always have a ‘current value’ which changes
dynamically in accordance with user input. The ad-
dition of scripting to HTML potentially makes all
elements dynamic, as a script may change content
and attribute values of elements. HTML forms are
still limited to submitting the value of form con-
trols, though. XForms doesn’t make the same dis-
tinction between form controls and other elements.
The formsheet mechanism is general enough to al-
low submitted data to be assembled from all parts
of a document. One could even imagine having
XML documents with XForms without having any
form controls in the HTML sense but still be able
to capture (part of) the state of the document at
some point in time and submit it.

Hidden fields:
This means, for example, that there is no need
for special hidden fields (a form control which is
not rendered and which contributes a fixed value
to the form data set). This is so because any el-
ement can effectively act as a hidden field. The
stylesheet in this case is written so as not to render
the element while the formsheet will use its value.
This is an improvement on HTML hidden fields

as XForm hidden fields can be structured XML,
i.e. they can have arbitrary attributes and child
nodes of their own!

Controls need not be named:
Another consequence of using formsheets is that
form controls need not have names, as form val-
ues are not necessarily name-value pairs.

Forms as links:
The fact that global forms are not associated with
its form controls through lexical scoping means
that the same set of form controls can be used
by several forms. And any linking element can be
extended to be a form element, so whereas HTML
submit elements are buttons (or, less commonly,
image maps), with XForms we can allow any el-
ement to trigger form submission. For example,
wellformed HTML might allow A links to act as
forms, a stylesheet language defining a tabbed
pane element could submit an XForm data value
when the user changed pane etc.
The following DTD approximates an XForm

compliant definition of HTML forms. The param-
eter entities are defined in the HTML specification
and some details (like scripting related attributes)
have been left out for simplicity.

<!ELEMENT FORM (%block;)C>
<!ATTLIST FORM

xf:form CDATA #FIXED "scoped"
xml:link CDATA #FIXED "simple"
action %URI; #REQUIRED
method (GET|POST) GET
enctype CDATA "application/x-www-form-urlencoded"
formsheet CDATA #IMPLIED
form-lang CDATA #IMPLIED
charset CDATA #IMPLIED
result-ns CDATA #IMPLIED
additional XLink attributes

>
<!ELEMENT INPUT EMPTY>
<!ATTLIST INPUT

xf:attributes CDATA #FIXED "form type"
type %InputType; #CDATA
name CDATA #IMPLIED
value CDATA #IMPLIED

>

122

This definition largely allows backwards com-
patibility with HTML4.0 while allowing the use of
formsheets and XForm-map encoded form values.

7.2. XFDL

A number of companies offer products in the area
of digital, networked forms processing, but to our
knowledge only one proposal exists for a standard-
ized XML form language for use on the Web: the
Extensible Forms Description Language [3].

The approach taken in XFDL is very different
from that of XForms. XFDL is an XML application
and defines a fixed set of form elements, structural
markup, GUI display elements, and scripting capa-
bilities all within the same language. The emphasis
seems to be on defining a markup language (form
controls and other markup) which allows for the
construction of visually pleasing on-line forms and
which is powerful enough to faithfully reproduce
their paper-based equivalents. Additionally XFDL
adds scripting functionality (for checking form val-
ues on clients) through it’s own scripting language.
It doesn’t seem to address form value construction or
typing.

In contrast the approach taken in designing
XForms was to define forms processing separate
from other pieces of the XML puzzle such as
stylesheets, linking and scripting and make it as
modular and generic as possible. XForms and XFDL
operates at different levels of abstraction, and it
would be possible to define an XForm compliant
XML form language using the XFDL form controls
and standard XML stylesheet and scripting support.

8. Conclusion

This paper has presented XForms-a proposal for
what forms could be taken to mean in XML. The
proposal is a radical rethinking of HTML forms
and generalizes those, while ensuring the possibility
of defining a ‘wellformed’ HTML DTD which is
XForm compliant. The main contributions of this
paper are the idea of using ‘formsheets’ to compute
form values, the proposal for how to specify typed
input fields, and the definition of a forms framework
for XML which dissociates intrinsic properties of

Web forms from any specific markup language and
in particular from any specific set of form controls.
This broadens the scope of XForms and makes the
basic mechanisms applicable to input devices other
than keyboards and mice.

Designing protocols to be modular and single-
function has been a very successful design principle
on the Internet. XForms is intended to address funda-
mental aspects of XML based forms processing and
to fit in well with other XML technologies such as
XML itself, XML namespaces, XSL, XLink, action
sheets [2], and scripting languages.

References

[1] V. Apparao et al., Document Object Model (DOM) Level
1 Specification, W3C Recommendation, October 1998,
http://www.w3.org/TR/REC-DOM-Level-1/

[2] V. Apparao, B. Eich, R. Guha and N. Ranjan, Action
sheets: A modular way of defining behavior for XML and
HTML, W3C Note, June 1998, http://www.w3.org/TR/NO
TE-AS

[3] J. Boyer, T. Bray and M. Gordon, Extensible Forms De-
scription Language (XFDL) 4.0, W3C Note, September
1998, http://www.w3.org/TR/NOTE-XFDL

[4] T. Bray, C. Frankston and A. Malhotra (Eds.), Document
Content Description for XML, W3C Note, July 1998,
http://www.w3.org/TR/NOTE-dcd

[5] T. Bray, D. Hollander and A. Layman (Eds.), Namespaces
in XML, W3C Recommendation, January 1999, http://ww
w.w3.org/TR/REC-xml-names/

[6] T. Bray, J. Paoli and C.M. Sperberg-McQueen (Eds.),
Extensible Markup Language (XML) 1.0, W3C Rec-
ommendation, February 1998, http://www.w3.org/TR/RE
C-xml

[7] J. Clark and S. Deach (Eds.), Extensible Stylesheet Lan-
guage (XSL), W3C Working Draft, August 1998, http://ww
w.w3.org/TR/WD-xsl

[8] F. Dawson and P. Hoffman, The vCard v3.0 XML DTD,
work in progress, November 1998, draft-dawson-vcard-
xml-dtd-02.txt.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk and T. Berners-
Lee, Hypertext Transfer Protocol — HTTP/1.1, RFC 2068,
January 1997.

[10] E. Maler and S. DeRose (Eds.), XML Linking Language
(XLink), W3C Working Draft, March 1998, http://www.w3
.org/TR/WD-xml-link

[11] L. Masinter, Returning values from forms: multipart=form-
data, RFC 2388, August 1998.

[12] S. Pemberton et al., XHTML 1.0: The Extensible Hy-
perText Markup Language, W3C Working Draft, February
1999, http://www.w3.org/TR/WD-html-in-xml/

[13] D. Raggett, A. Le Hors and I. Jacobs (Eds.), HTML 4.0

123

Specification, W3C Recommendation, April 1998, http://w
ww.w3.org/TR/REC-html40

[14] E. Whitehead and M. Murata, XML Media Types, RFC
2376, July 1998.

Anders Kristensen is a member of
the research staff at Hewlett-Packard
Laboratories in Bristol, U.K. His in-
terests includes an array of WWW
and Internet technologies, distributed
systems, object-orientation, software
development, design patterns, and
framework design. Anders holds an
M.Sc. degree in computer science
and a B.Sc. in mathematics from
Aarhus University, Denmark. Home
page: http://www-uk.hpl.hp.com/peo
ple/ak/.

