
ELSEVIER

XML-GL: a graphical language for querying and restructuring
XML documents 1

Stefano Ceri a,Ł,2, Sara Comai a,2, Ernesto Damiani b,3, Piero Fraternali a,2,
Stefano Paraboschi a,2, Letizia Tanca a,2

a Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
b Università di Milano, Polo di Crema, Via Bramante 65, Crema (CR), Italy

Abstract

The growing acceptance of XML as a standard for semi-structured documents on the Web opens up challenging
opportunities for Web query languages. In this paper we introduce XML-GL, a graphical query language for XML
documents. The use of a visual formalism for representing both the content of XML documents (and of their DTDs)
and the syntax and semantics of queries enables an intuitive expression of queries, even when they are rather complex.
XML-GL is inspired by G-log, a general purpose, logic-based language for querying structured and semi-structured data.
The paper presents the basic capabilities of XML-GL through a sequence of examples of increasing complexity.  1999
Published by Elsevier Science B.V. All rights reserved.

Keywords: XML; Query languages; Graphical queries

1. Introduction and motivations

XML [19] is a recent recommendation of the
World Wide Web Consortium for a meta-language
to define mark-ups for content publishing on the
Web. The design goals of XML are driven by the
five-year experience of usage of HTML as a con-
tent description language, which has exposed several
inadequacies:
ž the HTML tag set is fixed, and its extension to

cover new application requirements either breaks

Ł Corresponding author.
1 The work presented in the paper has been supported by Esprit
Project nr. 28771 ‘W3I3’, and MURST project ‘Interdata’.
2 E-mail: {ceri,comai,fraterna,parabosc,tanca}@elet.polimi.it
3 E-mail: edamiani@crema.unimi.it

the standard or demands a long standardization
process.
ž HTML mark-up intermixes structural and visual

annotations, producing documents which are hard
to process by software agents searching for infor-
mation on the Web.
XML addresses both problems by letting content

producers define and use the set of tags that best
mirrors the structure and conceptual properties of the
content they want to publish.

The shift from HTML to XML brings a major
change in the structure of Web information, which
becomes more and more a collection of semi-struc-
tured objects, i.e., pieces of content for which at
least a partial representation of structure (known as
schema) is available. This evolution brings forth the
necessity of novel languages for extracting informa-

 1999 Published by Elsevier Science B.V. All rights reserved.

94

tion from XML content, much in the same way as
traditional query languages (notably SQL) have been
used for extracting information from structured data
stored in databases. As in database applications, the
purpose of a query language is twofold:
ž letting users extract information from data reposi-

tories;
ž restructuring information stored in one or more

repositories to match novel users’ needs.
XML-GL addresses both issues, by permitting

the formulation of queries for extracting information
from XML documents and for restructuring such
information into novel XML documents.

The originality of XML-GL with respect to
other proposals for querying XML documents, like
XML-QL [6], XQuery [5], XQL [8,16], and XSL
[17], is that queries are formulated visually, using a
graph-based formalism close to the structure of XML
documents (e.g., comparable to the visual represen-
tations of XML documents offered by XML author-
ing tools like the Near & Far XML editor). However,
XML-GL is not a visual interface over a conventional,
textual, query language, but a graph-based query lan-
guage with both its syntax and semantics defined in
terms of graph structures and operations [2–4,14].

1.1. Requirements for an XML query language

Prior to introducing the features of XML-GL, we
propose a set of requirements for the design of a
query language over XML documents:
(1) The language should be flexible enough to

allow query formulation both for valid and
well-formed documents. Availability of a DTD
should result in a facilitation of both expressing
and evaluating a query in XML-GL.

(2) We want to address queries to a whole Web
site, taking into account links between differ-
ent documents, rather than querying only one
document at a time.

(3) We want the possibility to access DTDs and
XML-based metadata (such as those proposed
in the RDF draft standard proposal [1] as well
as data, by using the same query paradigm.

(4) We want to extract information from an XML
document, by means of powerful, yet declara-
tive, pattern matching and element manipula-
tion primitives.

(5) We want to reshape the source XML docu-
ments, by specifying new links between exist-
ing elements as well as new elements in the
XML document resulting from a query. This
last process requires the introduction of new
tags in the result document.

(6) We want to specify regular expressions on
paths, i.e., the possibility of following recur-
sive and arbitrarily long paths in a site, possibly
specifying conditions on path nodes. This fea-
ture is particularly helpful in case the search
is directed towards certain document patterns,
that may be placed arbitrarily in the XML
source.

(7) We also want to support arbitrary computations
on the numeric content of documents by means
of built-in functions.

(8) Given that XML is positional, we may want
to allow an order-sensitive query interpretation,
i.e., one in which the relative order of appear-
ance of XML tags and character data is mean-
ingful. However, such an interpretation may be
overly restrictive, so the query language should
also offer an unordered interpretation (probably
as default).

(9) Under a given query interpretation, XML-GL
should be able to compute approximate results,
similar to the ones that fully satisfy the queries.

(10) Finally, we want queries in our language to
be easy to understand, even by inexperienced
users, and the DTD of the result of the query to
be immediately apparent.

2. The XML-GL data model

An XML document can be compliant to a Docu-
ment Type Definition (DTD), that specifies the types
of mark-up elements that can appear in the docu-
ment, their attributes and containment relationships.
If an XML document adheres to a DTD, it is said
to be valid. If an XML document lacks a DTD but
respects some syntactic rules for tag placement, it is
said to be well formed.

For coherence with the visual nature of XML-GL,
we introduce an explicit data model for XML doc-
uments, called XML-GDM (XML Graphical Data
Model), which we use to represent both the expected

95

<!ELEMENT order (shipto, contact?, item+, date)> <!ELEMENT day PCDATA>
<!ATTLIST order number PCDATA #REQUIRED> <!ELEMENT month PCDATA>
<!ELEMENT shipto (fulladdress|reference)> <!ELEMENT year PCDATA>
<!ELEMENT contact (reference|PCDATA)> <!ELEMENT item(book,quantity,discount?)>
<!ELEMENT fulladdress(company?,city,addressline+)> <!ELEMENT book(isbn,title?,price,author*)>
<!ELEMENT reference EMPTY> <!ELEMENT author(firstname?,lastname)>
<!ATTLIST reference customer IDREF> <!ELEMENT firstname PCDATA>
<!ELEMENT person(firstname?,lastname,fulladdress)> <!ELEMENT lastname PCDATA>
<!ATTLIST person id ID> <!ELEMENT isbn PCDATA>
<!ELEMENT company PCDATA> <!ELEMENT title PCDATA>
<!ELEMENT addressline PCDATA> <!ELEMENT price PCDATA>
<!ELEMENT city PCDATA> <!ELEMENT quantity PCDATA>
<!ELEMENT date (day, month, year)> <!ELEMENT discount PCDATA>

Fig. 1. DTD of the running example.

structure of XML documents (i.e., their DTDs) and
actual documents. XML-GDM syntax will be used
also (with a few additional graphical notations) for
writing XML-GL queries and for representing the
DTD of their result, with the benefit of reducing to
the minimum the notations that the user should learn
to query XML documents.

Well-formed documents without a DTD can be
queried in the same way as valid documents: how-
ever, since no information about the structure of the
document is available at query formulation time, it
is more likely that queries may not match exactly
the structure of the document and result in empty
answers.

2.1. Running example

Consider the DTD shown in Fig. 1, which spec-
ifies the structure of documents containing book
orders. For each order, the information about the
consignee, the ordered items, the date, and possibly
a contact address are given. Each item contains the
information about the book, the quantity, and pos-
sibly the discount percentage. For each book, the
ISBN code, the price, and possibly the title and
the authors are known. A possible XML document
conforming to this DTD is shown in Fig. 2.

2.2. XML graphical data model

The XML-GDM data model consists of three
concepts: objects, relationships, and properties:
ž Objects, depicted as rectangles, indicate abstract

items without a directly representable value.

ž Properties, depicted as circles connected to the
object they refer to, indicate representable val-
ues (e.g., a character data or parsed character
data string); properties have a name and a type,
represented as labels.
ž Relationships, depicted as arcs between objects,

indicate semantic associations (e.g., containment
or reference). Relationships have an orientation,
from a source object to a destination object.

2.3. Representing DTDs and documents

For the sake of explanation, we classify XML
content into four categories:
ž Printable content: PCDATA content 4.
ž Non-terminal elements: XML elements which in-

clude other sub-elements.
ž Terminal elements: XML elements with printable

content or EMPTY content.
ž Mixed elements: XML elements with either print-

able content or element content, in mutual exclu-
sion.
XML attributes are also classified as object-identi-

fiers, if their type is ID, object-valued, if their type is
IDREF or IDREFS, or printable attributes, otherwise.

The correspondence between an XML DTD and
an XML document and an XML-GDM graph is
established by the following rules 5:

4 For simplicity, in the rest of the paper we will not distinguish
between CDATA and PCDATA content.
5 The rules assume that all the parameter entities used in the
DTD (e.g., to represent sub-elements or attributes shared by
several elements) have been expanded.

96

<?xml version="1.0" standalone="no"
encoding="UTF8"?>

<DOCTYPE ORDER SYSTEM "order.dtd">

<ORDER number=1>
<SHIPTO>

<REFERENCE customer="C00001"></REFERENCE>
</SHIPTO>
<CONTACT>Tim Bell</CONTACT>ITEM>
<DATE><DAY>14</DAY><MONTH>11</MONTH>

<YEAR>1998</YEAR></DATE>
<ITEM>

<BOOK><ISBN>15536455</ISBN>
<TITLE>Introduction to XML</TITLE>
<PRICE>24.95</PRICE>
<AUTHOR><FIRSTNAME>Charles</FIRSTNAME>

<LASTNAME>Porter</LASTNAME></AUTHOR>
</BOOK>
<QUANTITY>6</QUANTITY>
<DISCOUNT>.40</DISCOUNT> </ITEM>

<ITEM>
<BOOK><ISBN>15532155</ISBN>

<TITLE>Introduction to Internet</TITLE>
<PRICE>22.50</PRICE>
<AUTHOR><FIRSTNAME>Steve</FIRSTNAME>

<LASTNAME>Andrews</LASTNAME></AUTHOR>
</BOOK>
<QUANTITY>10</QUANTITY>
<DISCOUNT>.42</DISCOUNT> </ITEM> </ORDER>

<ORDER number=2>
<SHIPTO>

<FULLADDRESS><COMPANY>ASA</COMPANY>
<CITY>Los Angeles</CITY>
<ADDRESSLINE>18 Harvard str.</ADDRESSLINE>

</FULLADDRESS> </SHIPTO>
<CONTACT>

<REFERENCE customer="C00002"></REFERENCE>
</CONTACT>
<DATE><DAY>20</DAY><MONTH>11</MONTH>

<YEAR>1998</YEAR></DATE>

<ITEM>
<BOOK><ISBN>15536455</ISBN>

<TITLE>Introduction to XML</TITLE>
<PRICE>24.95</PRICE>
<AUTHOR><FIRSTNAME>Charles</FIRSTNAME>

<LASTNAME>Porter</LASTNAME>
</AUTHOR> </BOOK>

<QUANTITY>6</QUANTITY>
<DISCOUNT>.40</DISCOUNT> </ITEM>

<ITEM>
<BOOK><ISBN>15532155</ISBN>

<TITLE>Introduction to Internet</TITLE>
<PRICE>22.50</PRICE>
<AUTHOR><FIRSTNAME>Steve</FIRSTNAME>

<LASTNAME>Andrews</LASTNAME>
</AUTHOR> </BOOK>

<QUANTITY>10</QUANTITY>
<DISCOUNT>.42</DISCOUNT> </ITEM> </ORDER>

<PERSON id="C00001">
<FIRSTNAME>Robert</FIRSTNAME>
<LASTNAME>Moore</LASTNAME>
<FULLADDRESS><COMPANY>ABC</COMPANY>

<CITY>Los Angeles</CITY>
<ADDRESSLINE>10 Michigan str.</ADDRESSLINE>

</FULLADDRESS> </PERSON>
<PERSON id="C00002">

<FIRSTNAME>Tom</FIRSTNAME>
<LASTNAME>Smith</LASTNAME>
<FULLADDRESS><COMPANY>ASA</COMPANY>

<CITY>Los Angeles</CITY>
<ADDRESSLINE>18 Harvard str.</ADDRESSLINE>

</FULLADDRESS> </PERSON>
<PERSON id="C00003">

<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME>
<FULLADDRESS><CITY>San Francisco</CITY>

<ADDRESSLINE>15 Washington str.</ADDRESSLINE>
</FULLADDRESS> </PERSON>

Fig. 2. Running example of XML document.

ž Each non-terminal element E is mapped to an
XML-GDM object with the same name as E .
ž Between any two non-terminal elements E1 and

E2 such that E1 is a sub-element of E2 we estab-
lish a relationship from the object that represents
E2 to the object that represents E1.
ž When a terminal element E1 is a sub-element of

another element E2, it is mapped to a property of
E2 named E1, with PCDATA type. In the represen-
tation of an element occurrence in a document,
this property has the same value as the XML

PCDATA content. If a terminal element E is not
contained in any other element, it is represented
as an XML-GDM object, named E , with one
(predefined) property named content, of type
PCDATA 6.
ž Element disjunction (j): if a non-terminal element

E contains sub-elements E1; : : : ; En that are in
exclusive ‘or’, i.e., only one of them can be

6 In the sequel we will omit from representation the type label in
case of PCDATA and ID.

97

present in E , then an arc is drawn which crosses
the relationships between E and E1; : : : ; En la-
beled ‘xor’.
ž Mixed elements: a mixed element E1 containing

either PCDATA or a sub-element E2 is represented
as an object E1 including the disjunction of E2

and the predefined property content, introduced
above. This notation considers the predefined
property content as equivalent to a predefined ele-
ment (e.g., named PCDATA) with a single property
named content of type PCDATA.
ž Each printable attribute and object-identifier of an

element E is mapped to a property of the object
that represents E , with the same name and type
of the XML attribute. For distinguishing XML
attributes from nested terminal elements, for the
former we color in black the small circle of the
property.
ž Object-valued attributes: each object-valued at-

tribute of an element declaration E in a DTD
is mapped to a relationship from the object that
represents E to a predefined XML-GDM object,
named ANY, which represents any XML element
(terminal or non-terminal). The attribute name
in the DTD is mapped to the label of the re-
lationship. In an actual XML document, each
object-valued reference from an occurrence of an
element E is mapped into a relationship from
this occurrence to the single element occurrence
having the ID specified in the IDREF attribute of

PERSON

SHIPTO

ORDER

CONTACT ITEM

BOOKREFERENCEFULLADDR.

titleisbn

id

(1:n)

addressline

(1:n)

quantity

discount

price

number
DATE

day month

year

(0:1)

(0:1)(0:1)
(0:1)

(0:1)

(0:1)

(1:1)

last-
name

company city customer

ANY

name
first-

(0:1)

AUTHOR

first-
name (0:1)

last-
name

(0:1)

xor xor

(0:n)

content

Fig. 3. Example of DTD according to the XML-GML model.

the instance of E . If the object-valued attribute
is of type IDREFS, a set of such relationships is
introduced.
ž Content model cardinality constraints: the itera-

tion operators ‘C’, ‘Ł’ and the optionality oper-
ator ‘?’ used in the content model of DTDs are
expressed as cardinality constraints on either re-
lationships or properties; cardinality constraints
have the following forms: (0 : N) for Ł, (0 : 1) for
?, and (1 : N) for C. If no operator is present,
the cardinality constraint (1 : 1) is assumed. With
object-valued attributes, the type IDREF corre-
sponds to the cardinality (1 : 1) — or (0 : 1) if the
attribute is IMPLIED — while the type IDREFS
corresponds to the default cardinality (1 : N), —
or (0 : N) if the attribute is IMPLIED.
ž Element order: the actual or required order of

appearance of sub-elements in a super-element is
represented by ordering the arcs that represent
the containment relationships counter-clockwise,
starting from the arc corresponding to the first
sub-element, which is marked by a small trait.
According to the above rules, the DTD of Fig. 1 is

represented in XML-GDM as shown in Fig. 3. XML-
GDM support the representation of actual XML doc-
uments with the same formalism as for DTDs, except
that cardinality constraints and disjunctions need to
be represented, since a particular element occurrence
always has a specific set of sub-elements and par-
ticular choice of alternatives in the representation.

98

SHIPTO

REFERENCE

customer

14

ORDER
number

24.95 Charles Porter

PERSON id

last-
namename

first-

CONTACT

BOOK

titleisbn
price

AUTHOR

first-
name

last-
name

FULLADDR.

addresslinecompany city

ITEM

quantity

discount

DATE

day month

year

ITEM

quantity

discount

BOOK

titleisbn
price

AUTHOR

first-
name

last-
name

10

.42

15532155 Introduction
to Internet

22.50 Steve Andrews

1

C00001
Tim Bell

MooreRobert

6

.40

11

1998

Introduction
to XML

15536455

ABC Los Angeles 10 Michigan str.

content

Fig. 4. Representation of the document of the running example in XML-GDM.

A piece of the instance of Fig. 2 is represented in
Fig. 4.

3. Query language

XML-GL is a query language for XML-GDM
data. An XML-GL query can be applied either to
a single XML document or to a set of documents,
e.g., those composing a Web site. The query pro-
duces a new XML document as the result. Thus,
the execution of a query results in a transformation
of the source XML document(s) into a new XML
document. An XML-GL query consists of four parts:
(1) The extract part identifies the scope of the query,

by indicating both the target documents and the
target elements inside these documents; by draw-
ing a parallel with SQL, the extract part can be
seen as the counterpart of the from clause, which
establishes the relations targeted by the query.

(2) The match part (optional) specifies logical con-
ditions that the target elements must satisfy in
order to be part of the query result; continuing
the parallel with SQL, the condition part can be
seen as the counterpart of the where clause, which
chooses the target tuples that are part of the result.

(3) The clip part specifies the sub-elements, of the
extracted elements that satisfy the match part, to
be retained in the result. With respect to SQL,
the clip part corresponds to the select clause,

which permits the user to define which columns
of the result tuples should be retained in the final
output of the query.

(4) The construct part (optional) specifies the new
elements to be included in the result document
and their relationships to the extracted elements;
the same query can be formulated with different
construction parts, to obtain results formatted dif-
ferently. With respect to SQL, the construct part
can be seen as the extension of the create view
statement, which permits the user to design a new
relation from the result of a query. The construct
part permits both the creation of new elements,
the definition of new links, and the restructuring
of information local to a given element.

Graphically, an XML-GL query is a pair of XML-
GDM graphs, displayed side by side and separated
by a vertical line; the left-side graph visually repre-
sents the extract and match parts, while the right-side
graph conveys the clip and construct parts. This sep-
aration sharply evidences those concepts which are
used to extract elements from the target documents
and those concepts which are used to construct the
result documents produced by the query. Indeed, the
right-side graph represents the DTD of the result.

In the following sections, we progressively intro-
duce the features of XML-GL by means of queries
with increasingly complex structures. First, we will
show simple queries that extract elements from target
documents and produce result documents in differ-

99

ent ways (extract-clip queries, Section 3.1); then, we
show queries that apply filtering conditions to the
extracted elements to be included in the result (ex-
tract-match-clip queries, Section 3.2); finally we will
introduce queries that define arbitrarily structured re-
sult documents, composed of new elements, possibly
intermixed with elements extracted from the tar-
get documents (extract-match-construct-clip queries,
Section 3.3).

3.1. Extract-clip queries

The simplest form of XML-query is the extract-
clip, which extracts a portion of an XML document
and produces as output a new document containing
the extracted data.

Example 1. The query of Fig. 5 finds all the BOOK
elements from a specified set of documents over the
Web. Its result is shown in Fig. 7b.

In extract-clip queries, the left-side graph contains
the extract part of the query. In the example, the
extract part operates on the single target element
book. More generally, the extract part of a query may
contain several target elements, represented as root
nodes of the left-side graph.

*

www.polimi.it/ceri/ord*.htm

BOOK
BOOK

Fig. 5. Example of extract-clip query.

PCDATA

*

a) b) c)

*

e) e’)

*

PCDATA

d)

BOOK BOOK BOOK BOOK BOOK BOOK

lastname

*

*

AUTHOR

Fig. 6. Graphical notations for expressing the clip.

Target elements may optionally contain the indica-
tion of the URLs of the document or set of documents
that should be used as input in order to evaluate the
query. For convenience, URL in queries may contain
wildcards; in the query of Fig. 5, the string “http://
www.elet.polimi.it/ceri/ord*.xml” inside object BOOK
makes the query target only those XML documents in
the ceri directory of host www.elet.polimi.it,
whose name starts with the string ord.

The right-side graph expresses the clip part, which
defines the DTD of the result document as an XML-
GDM graph, out of the structure of the target elements
mentioned in the extract part. When an object men-
tioned in the extract part should belong to the result
of the query, it must be included also in the clip part.
The correspondence between left-side and right-side
objects is by name (as for object BOOK in the exam-
ple of Fig. 5); if this introduces ambiguity (e.g., for
queries using the same elements multiple times in the
extract part), then the one-to-one correspondence may
be made explicit by drawing an edge that connects the
corresponding elements of the two graphs.

The meaning of the one-to-one correspondence
is that the result of the query will be constructed-
according to the structure dictated by the right-side
graph-using exactly those object instances which are
selected by the extract part and are mentioned in the
clip part. In the example of Fig. 5, all books found
in the target XML documents are used to build the
result.

When an extracted element is used to build the
result, the clip part must also specify which sub-
elements should be retained and which should be
discarded. To make the clip part more concise, the
following shorthand notations are defined, repre-
sented in Fig. 6:
ž all sub-elements at the first level of nesting are

kept (Fig. 6a);

100

Notation A: first level elements

Notation C: first level terminal and

Notation E: all occurrences of a nested property

<BOOK>
<ISBN>15536455</ISBN>
<TITLE>Introduction to XML</TITLE>
<PRICE>24.95</PRICE>
<AUTHOR></AUTHOR>

</BOOK>
<BOOK>

<ISBN>15532155</ISBN>
<TITLE>Introduction to Internet</TITLE>
<PRICE>22.50</PRICE>
<AUTHOR></AUTHOR>

</BOOK>

PCDATA

<BOOK>
<LASTNAME>Porter</LASTNAME>

</BOOK>
<BOOK>

<LASTNAME>Andrews</LASTNAME>
</BOOK>

<BOOK>
<ISBN>15532155</ISBN>
<TITLE>Introduction to Internet</TITLE>
<PRICE>22.50</PRICE>

</BOOK>
<BOOK><ISBN>15536455</ISBN>

<TITLE>Introduction to XML</TITLE>
<PRICE>24.95</PRICE>

</BOOK>

Notation B: all level elements

Notation D: all level terminal and

Notation E’: all occurrences of a nested element

<BOOK>
<ISBN>15536455</ISBN>
<TITLE>Introduction to XML</TITLE>
<PRICE>24.95</PRICE>
<AUTHOR><FIRSTNAME>Charles</FIRSTNAME>

<LASTNAME>Porter</LASTNAME></AUTHOR>
</BOOK>
<BOOK>

<ISBN>15532155</ISBN>
<TITLE>Introduction to Internet</TITLE>
<PRICE>22.50</PRICE>
<AUTHOR><FIRSTNAME>Steve</FIRSTNAME>

<LASTNAME>Andrews</LASTNAME></AUTHOR>
</BOOK>

PCDATA

<BOOK>
<ISBN>15536455</ISBN>
<TITLE>Introduction to XML</TITLE>
<PRICE>24.95</PRICE>
<FIRSTNAME>Charles</FIRSTNAME>
<LASTNAME>Porter</LASTNAME>

</BOOK>
<BOOK>

<ISBN>15532155</ISBN>
<TITLE>Introduction to Internet</TITLE>
<PRICE>22.50</PRICE>
<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME>

</BOOK>

<BOOK>
<AUTHOR>

<FIRSTNAME>Charles</FIRSTNAME>
<LASTNAME>Porter</LASTNAME></AUTHOR>

</BOOK>
<BOOK>

<AUTHOR>
<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME></AUTHOR>

</BOOK>

Fig. 7. Results of different clip parts for the query of Fig. 5.

ž all sub-elements at all levels of nesting are kept
(Fig. 6b);
ž only the terminal sub-elements and elements of

type PCDATA at the first level of nesting are kept
(Fig. 6c);
ž only the terminal sub-elements and elements of

type PCDATA at all levels of nesting are kept

(Fig. 6d);
ž all occurrences of a given element found at any

level of nesting, without the intermediate enclos-
ing elements, are kept (Fig. 6e and Fig. 6e0).
The results produced by the above clip parts

applied to the set of all books in the running example
document are illustrated in Fig. 7.

101

ORDER

SHIPTO

city

FULLADDR.

ITEM

BOOK

ORDER

ITEM

* *

SHIPTO

Los Angeles

title

Introduction
to XML

Fig. 8. Example of extract-match-clip query with a match part imposing predicates on sub-elements.

3.2. Extract-match-clip queries

The match part extends the left-side graph of
the query with the possibility of expressing a large
class of selection predicates. These are described
by means of a well-defined collection of graphical
notations which enable the expression of existential
conditions (e.g., the requirement that a sub-element
exists), or predicates on element’s properties (e.g.,
required values for attributes and PCDATA content);
all predicates are implicitly in conjunctive form.

The condition of a query normally involves several
sub-elements of the target elements in the extract part;
these elements are evidenced in the left-side graph.
This operation is eased by the presence of the XML-
GDM representation of the DTD of the input doc-

ument(s), which exactly gives the needed graphical
representation of the elements’ internal structure. The
same notation is also used to specify the sub-elements
to be kept in the clip part, as shown in the previous
section. Thus, query construction can be easily sup-
ported by a ‘drag-and-drop’ interface, starting from
the construction of the graph in the left part of a query,
and then proceeding to the right-side graph.

Example 2. The query of Fig. 8 finds orders con-
taining the book titled “Introduction to XML”, to be
shipped to an address in Los Angeles, and presents
such orders with their shipping and item informa-
tion 7.

The document produced as result of the previous
query is the following:

<ORDER number=2>
<SHIPTO>
<FULLADDRESS><COMPANY>ASA</COMPANY><CITY>Los Angeles</CITY>
<ADDRESSLINE>18 Harvard str.</ADDRESSLINE>
</FULLADDRESS>
</SHIPTO>
<ITEM>
<BOOK><ISBN>15536455</ISBN>
<TITLE>Introduction to XML</TITLE>
<PRICE>24.95</PRICE>
<AUTHOR><FIRSTNAME>Charles</FIRSTNAME><LASTNAME>Porter</LASTNAME></AUTHOR>
</BOOK>
<QUANTITY>6</QUANTITY>

7 For sake of simplicity, from now on we will omit URLs in the match part.

102

<DISCOUNT>.40</DISCOUNT>
</ITEM>
<ITEM>
<BOOK><ISBN>15532155</ISBN>
<TITLE>Introduction to Internet</TITLE>
<PRICE>22.50</PRICE>
<AUTHOR><FIRSTNAME>Steve</FIRSTNAME><LASTNAME>Andrews</LASTNAME></AUTHOR>
</BOOK>
<QUANTITY>10</QUANTITY>
<DISCOUNT>.42</DISCOUNT>
</ITEM>
</ORDER>

Note that all orders appearing in the result have
both an address and (at least) one item satisfying the
extract-match part.

The condition in the match part may also involve
the application of boolean operators to attributes and
PCDATA properties. To this end, the match part may
use the comparison operators (>, <, >=, <=, = and
<>) and the string operators (_ and %). The match
part can also be used to write queries targeted to
several elements, similar to select-join queries of
SQL.

Example 3. The query of Fig. 9 finds all books writ-
ten bij an author with the same last name as a person
whose name starts with ‘S’.

The join condition on last names is expressed
in the match part by expanding the graph of the
BOOK element to show the inner AUTHOR element,
and connecting the author’s and person’s last names;
note that for both the AUTHOR and PERSON elements,
lastname is not an XML attribute, but a piece of
XML data.

Queries involving element identity and references
between elements are easily represented, based on

AUTHOR

BOOK

PERSON

lastname lastname firstname

*

BOOK

S%

Fig. 9. Example of extract-match-clip query with join.

the treatment of element identity explained in Sec-
tion 2. Element identity is defined when an element
has an ID attribute and other elements refer to it
using IDREF(S) attributes: in this case, a query may
search for IDs that ‘point’ to the same element, i.e.,
that have the same value, as demonstrated in the
following example.

Example 4. The query of Fig. 10 finds the persons
referenced as contact in an order. The query extracts
those orders containing a contact that includes a ref-
erence (order #2, in the running example), and pairs
them to the person whose ID matches the customer
attribute of the reference element. These persons are
then included in the result in the clip part.

Element identity can also be used in join condi-
tions: the following query exploits IDREF attributes
to ‘join’ information of orders.

Example 5. The query of Fig. 11 finds the orders
shipped to persons who are also contacts in another

REFERENCE

PERSON

CONTACT

customer

ORDER

*

PERSON

Fig. 10. Example of extract-match-clip query involving ID
reference.

103

REFERENCE

CONTACT

PERSON

REFERENCE

customer

SHIPTO

ORDER ORDER

customer

ORDER

*

Fig. 11. Example of extract-match-clip query using element
identity.

order. Note that in this case the extract-match part of
the query contains two ORDER elements, and ambi-
guity is avoided by explicitly connecting only one of
them to its counterpart in the clip part. This technique
compares with the use of alias (with the keyword as)
in SQL queries, in order to disambiguate multiple
occurrences of the same table or column name by
associating each of them to a different variable.

Both positive and negated conditions are admitted:
to express that a condition is negative, this is drawn
using dashed lines, as in the following example.

Example 6. The query of Fig. 12a finds all books
having a title, while the query of Fig. 12b finds the
books with unknown title. In the preceding exam-
ples, conditions in the match part always specified
the name of the element to be extracted=matched:
however, if a query requires to express a condition
on a generic object, dummy nodes are used. They are
represented as unlabeled nodes which are matched
against ANY element.

BOOK

title

BOOK

title

a) b)

* *

BOOK BOOK

Fig. 12. Examples of extract-match-clip queries with positive (a) and negated (b) conditions in the match part.

BOOK PCDATA

Fig. 13. Example of extract-match-clip query with the special
object ANY.

Example 7. The query of Fig. 13 finds all the ele-
ments that contain a book and includes them in the
result with their PCDATA content and terminal sub-
elements.

3.3. Extract-match-construct-clip queries

So far, XML-GL queries have produced very
simple result documents, defined by a subset of
the elements extracted from target documents in
the extract part. However, XML-GL can be used to
produce more sophisticated result documents which:
ž combine sub-elements of several target elements;
ž introduce new elements whose content can be

derived from that of existing elements extracted
from the target documents;
ž contain new elements providing content grouping

or reordering capabilities.
From a document processing point of view, the

semantics of the construct part of XML-GL queries
is similar to that of a transformation program that
converts a tagged document into another one by
means of pattern matching and rewriting, as pro-
posed for instance in the DSSSL (Document Style
Semantics and Specification) language [15]. How-
ever, while DSSSL provides its transformation lan-
guage within a stylesheet-based environment for ren-
dering and processing SGML documents, the con-
struct part of XML-GL is concerned with restruc-

104

turing alone, cleanly separating the transformation
from the presentation issues. This corresponds to
the functional decomposition envisioned in recent
proposals for XML-based Web application environ-
ments [12]. Indeed, XML-GL construction can be
considered as a complement to current capabilities
of XSL (XML Style sheet Language) [17], which
again is mainly concerned with XML documents
rendering.

3.3.1. Embedding extracted content into new
elements

The simplest form of construction consists of
embedding elements extracted in the extract-match
part into new elements. Three types of embedding
are possible:
ž Constructed element: each element extracted by

the extract-match part is embedded into a distinct
instance of a new element. Element construction
is denoted by a containment relationship between
the new element (represented as an XML-GDM
object) and its sub-elements in the clip-construct
part (see Fig. 14a).
ž List: all elements extracted by the extract-match

part are embedded inside one new element. List
construction is denoted by a triangle representing
the new element connected by a containment
relationship to the objects in the clip-construct
part representing the sub-elements to be nested
(see Fig. 14b).
ž Grouping list: occurrences of the same element

extracted by the extract-match part are embed-
ded inside multiple lists defined by a grouping
criterion. Grouping list construction is denoted
by an index (a rectangle with horizontal lines)
representing the new grouping list connected by
a containment relationship to the objects in the
clip-construct part representing the sub-elements
to be nested (see Fig. 14c). The grouping criterion

PERSON
PERSON

lastnamefirstname

PERSON

lastnamefirstnamelastnamefirstname

RESULT

a) c)

PERSON

FULLADDR.

city

GROUP BY

RESULTRESULTb)

PERSON

FULLADDR.

PERSON

FULLADDR.

Fig. 14. Examples of constructed element (a), list (b) and grouping list (c).

is represented by an edge connecting the index to
one or more elements used for grouping.

Example 8. Consider the three queries of Fig. 14.
They find all the existing persons that have an ad-
dress; with element construction (a) one instance of
the new element (called RESULT) is created for each
person satisfying the given condition and contains
the person’s data according to the clip specification;
with the list construction (b) a single element (also
called RESULT) is created which contains the list of
persons satisfying the match part, along with their
nested sub-elements as specified by the clip speci-
fication; with the grouping list construction (c) the
resulting persons are grouped by city and one ele-
ment (named RESULT) is introduced for each group.
Formally, CITY induces a partition of the occur-
rences of PERSON, where each distinct value of CITY
is mapped to a distinct subset of persons.

Thus, the results of the three queries applied to
the document of Fig. 2 are the following:

Query A: element construction

<RESULT>
<PERSON id="C00001">
<FIRSTNAME>Robert</FIRSTNAME>
<LASTNAME>Moore</LASTNAME>
</PERSON>
</RESULT>
<RESULT>
<PERSON id="C00002">
<FIRSTNAME>Tom</FIRSTNAME>
<LASTNAME>Smith</LASTNAME>
</PERSON>
</RESULT>
<RESULT>
<PERSON id="C00003">
<FIRSTNAME>Steve</FIRSTNAME>

105

<LASTNAME>Andrews</LASTNAME>
</PERSON>
</RESULT>

Query B: list construction

<RESULT>
<PERSON id="C00001">
<FIRSTNAME>Robert</FIRSTNAME>
<LASTNAME>Moore</LASTNAME>
</PERSON>
<PERSON id="C00002">
<FIRSTNAME>Tom</FIRSTNAME>
<LASTNAME>Smith</LASTNAME>
</PERSON>
<PERSON id="C00003">
<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME>
</PERSON>
</RESULT>

Query C: grouping list construction

<RESULT>
<PERSON id="C00001">
<FIRSTNAME>Robert</FIRSTNAME>
<LASTNAME>Moore</LASTNAME>
</PERSON>
<PERSON id="C00002">
<FIRSTNAME>Tom</FIRSTNAME>
<LASTNAME>Smith</LASTNAME>
</PERSON>
</RESULT>
<RESULT>
<PERSON id="C00003">
<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME>
</PERSON>
</RESULT>

Fig. 15 pictorially summarizes the three different
construction primitives and how they build the result
from the extracted elements. The first option lists
all the selected elements, the second option builds
a result element containing all the selected persons,
and the third option presents them according to the
partitioning produced by the grouping criterion.

Moore

Smith

Andrews

Moore

Smith

Andrews

Moore

Smith

Andrews

Fig. 15. Summary of contruction primitives.

Example 9. The query of Fig. 16 demonstrates the
orthogonal combination of construction primitives;
it is a variant of Fig. 14c: it groups persons by city
and embeds these groups into a new element called
RESULT containing also the name of the city.

The query applied to the document of Fig. 2
returns the following result:

<RESULT>
<CITY>Los Angeles</CITY>
<PERSON id="C00001">
<FIRSTNAME>Robert</FIRSTNAME>
<LASTNAME>Moore</LASTNAME>
</PERSON>
<PERSON id="C00002">
<FIRSTNAME>Tom</FIRSTNAME>
<LASTNAME>Smith</LASTNAME>
</PERSON>
</RESULT>
<RESULT>
<CITY>San Francisco</CITY>
<PERSON id="C00003">
<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME>
</PERSON>
</RESULT>

PERSON

firstname lastname

PERSON

city

FULLADDR.

RESULT

GROUP BY

city

Fig. 16. Example of orthogonal combination of construction
primitives.

106

FULLADDR.

FULLADDR.

AUTHOR

ITEM

BOOK

firstname

lastname

*

ORDER

AUTHOR

ITEM

BOOK

PERSON

firstname

lastname lastname

firstname

EXTORDER

GROUP BY

Fig. 17. Example of extension of an element in the contruct part.

3.3.2. Extension of an element
XML-GL can also be used to restructure existing

documents, e.g., by including elements of one doc-
ument into another one or extending the elements
of one document with information originating from
related elements inside the same document.

Example 10. The query of Fig. 17 finds the orders
containing a book whose author’s first name and last
name appear also in an element of type PERSON and
produces a new element EXTORDERwhere the address
is added to each author. The result of this query ap-
plied on the document of Fig. 2 is the following:

<EXTORDER>
<ITEM>
<BOOK>
<AUTHOR>
<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME>
<FULLADDRESS>
<CITY>San Francisco</CITY>
<ADDRESSLINE>15 Washington str.
</ADDRESSLINE>
</FULLADDRESS>
</AUTHOR>
</BOOK>
</ITEM>
</EXTORDER>

<EXTORDER>
<ITEM>
<BOOK>
<AUTHOR>
<FIRSTNAME>Steve</FIRSTNAME>
<LASTNAME>Andrews</LASTNAME>
<FULLADDRESS>
<CITY>San Francisco</CITY>
<ADDRESSLINE>15 Washington str.
</ADDRESSLINE>
</FULLADDRESS>
</AUTHOR>
</BOOK>
</ITEM>
</EXTORDER>

In the result, one element EXTORDER is con-
structed for each group of items belonging to the
same order retrieved in the extract-match part. Items
in the result are the same as those retrieved in the
extract-match (as the by-name correspondence indi-
cates), but for a fact: each AUTHOR sub-element is
extended with the inclusion of the FULLADDRESS
element coming from the corresponding PERSON ob-
ject retrieved in the extract-match part.

XML-GL offers a rich set of additional features,
like unnesting and nesting of XML objects, element
ordering, data sorting, arithmetic functions, and ag-
gregate functions. In [2] these additional features are

107

presented, together with a description of the seman-
tics of the language.

4. Related work

The huge amount of data published via the World
Wide Web has led to a number of research efforts on
techniques to index, query and restructure Web sites
contents. In this section we provide a brief overview
of related work on XML query languages and, more
generally, on query languages for the Web (see also
[7]).

A considerable amount of research has been made
on how to complement keyword-based searching
with database-style support for querying the Web.
Several projects addressed this problem, and three
main Web query languages have been proposed so
far: Web3QL [9], WebSQL [13] and WebLog [10].
The first two languages are modeled after standard
SQL used for relational DBMSs, while the third
retains the flavor of the Datalog language.

In the specific domain of XML documents, pro-
posals for query languages are in their infancy.
Several preliminary contributions and position pa-
pers are collected in [18]. Among the discussed ap-
proaches, we review XML-QL [6], XQL [16] by Mi-
crosoft, Texcel, and webMethods, XQuery by Inso
[5], and XQL [8] by Fujitsu.

The XML-QL language [6] has been submitted
for evaluation to the World Wide Web Consortium
by a pool of researchers. XML-QL provides a tex-
tual syntax for writing queries that construct new
XML documents from target documents. The ex-
pressive power of XML-QL is comparable to that of
XML-GL, but the former has a different syntactic
flavor based on the use of pattern-matching expres-
sions and variables ranging over content and tag
names to extract content from target documents and
embed it into the result of a query.

The XML Query Language (XQL) [16] is a no-
tation proposed by several companies for addressing
and filtering the elements and text of XML doc-
uments. XQL is an extension to the XSL pattern
syntax [7]. The basic idea is to provide a syntax
to locate nodes (elements and text) within an XML
document, using a notation inspired by directory path
expressions. XQL relies on path expressions, filters,

and methods to achieve an effect similar to the ex-
tract-match part of an XML-GL query. Conversely,
there is no counterpart in XQL for the construction
of new documents, as provided by the clip-construct
part of XML-GL queries.

XQuery [5] is a query language proposed by
Inso Corporation for extracting information from
XML documents. XQuery draws its syntax from the
XPointer document linking language [11]. XQuery
provides a rich type system for representing XML
content and defines the output of queries as loca-
tions, which can be sets of XML elements, attributes,
or spans of text. A query consists of a sequence
of steps: each step selects nodes, either in absolute
terms or based on the output of the preceding step.
Examples of steps are: “select the element with the
given id” or “select from among the direct chil-
dren of the current location”. Sequences of steps are
joined by the dot operator, like in OQL path expres-
sions. XQuery most advanced features address the
use of links in queries and of regular expressions to
write order-sensitive queries.

XQL [8] by Fujitsu takes a different approach
to XML document querying, by proposing a syn-
tax which extends well-known database query lan-
guages (SQL and OQL) to address the features of
XML data. XQL has a select-from-where construct
extended with tag variables, path expressions, and
URL specification. XQL also includes primitive for
the construction of output documents (inclusive of
grouping) comparable to the construct-clip part of
XML-GL queries.

5. Conclusions

XML-GL is a sophisticated, but intuitive, visual
language for querying XML data sources. It draws
its unique features from an original combination of
orthogonal, natural primitives for visualizing DTDs
and documents, extracting their content, producing
new content from extracted data, and formatting
query results in complex ways. The use of a vi-
sual interface and language for querying XML-based
Web documents seems very appealing.

Our research activity will concentrate on the fol-
lowing directions. We will consolidate the language
and design a textual version with equivalent expres-

108

sive power; we have great interest in using a query
language jointly designed by the Web community,
but a consensual language has to emerge and the
language should support our graphical constructs in
a natural way. We will also address the require-
ments not currently satisfied by our proposal, such as
queries over arbitrarily linked documents and meta-
data, and flexible query interpretation and expan-
sion for non-exact document matching. Finally, we
will concentrate on the deployment of the language
within a Web-based visual environment, by studying
an effective query interface supporting the automatic
display of DTDs and=or documents and a collection
of graphical primitives for clipping and dragging
schema elements and for incrementally constructing
the query graphs.

References

[1] D. Brickley, R. Guha and A. Layman, W3C RDF Schemas
(working draft), October 1998, http://www.w3.org/TR/WD-
rdf-schema/.

[2] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi
and L. Tanca, XML-GL: a query language for XML docu-
ments, Technical Report 99.6, Dipartimento di Elettronica e
Informazione, Politecnico di Milano, February 1999.

[3] S. Comai, E. Damiani, R. Posenato and L. Tanca, A
schema-based approach to modeling and querying WWW
data, in: Proc. of FQAS’98, Roskilde, Denmark, May 1998,
LNAI 1495.

[4] A. Cortesi, A. Dovier, E. Quintarelli and L. Tanca, Op-
erational and abstract semantics of a query language for
semi-structured information, in: Proc. Int. Workshop on
Deductive Logic Programming (DDLP ’98), 1998.

[5] S.J. DeRose, XQuery: a unified syntax for linking and
querying general XML documents, in: Query Languages
98.

[6] A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D.
Suciu, XML-QL: a query language for XML, in: Proc.
QL’98 — The Query Languages Workshop (World-Wide
Web Consortium, Query Languages 98, Cambridge, MA,
December 1998), http://www.w3.org/TR/1998/NOTE-xml-
ql-19980819.

[7] D. Florescu, A. Levy and A. Mendelzon, Database
techiques for the World-Wide Web: a survey, ACM Sigmod
Record 27 (3) (1998).

[8] H. Ishikawa, K. Kubota and Y. Kanemasa, XQL: a
query language for XML data, in: Query Languages 98
(World-Wide Web Consortium, Query Languages 98,
Cambridge, MA, December 1998).

[9] D. Konopnicki and O. Shmueli, W3QL: a query system

for the World Wide Web, in: Proc. 21th Int. Conf. on Very
Large Databases, Zurich, 1995.

[10] L. Lakshmanan, F. Sadri and I. Subramanian, A declarative
language for querying and restructuring the Web, in: Proc.
RIDE-NDS, IEEE Computer Soc. Press, 1996.

[11] E. Maler and S. DeRose, XML Pointer Language
(XPointer), March 1998, http://www.w3.org/TR/WD-xptr.

[12] H. Maruyama, N. Uramoto and K. Tamura, XML, purpose
and use in Web applications, 1998, http://www.software.ib
m.com/xml.

[13] A. Mendelzon, G. Mihaila and T. Milo, Querying the World
Wide Web, in: Proc. Conf. on Parallel and Distributed
Information Systems, Toronto, Canada, 1996.

[14] J. Paredaens, P. Peelman and L. Tanca, G-log a declarative
graph-based language, IEEE Trans. on Knowledge and
Data Eng. 7 (3) (1995) 436–453.

[15] P. Prescod, An introduction to DSSSL, http://itrc.uwaterloo.
ca/papresco/dsssl/tutorial.html.

[16] J. Robie, J. Lapp and D. Schach, XML query language
(XQL), in: Query Languages 98 (World Wide Web Consor-
tium. Query Languages 98. Cambridge, MA, Dec. 1998).

[17] World-Wide Web Consortium, An introduction to XSL,
1998, http://www.w3C.org/Style/XSL.

[18] World-Wide Web Consortium, Query Languages 98,
Cambridge, MA, December 1998.

[19] World-Wide Web Consortium, XML 1.0, February 1998,
http://www.w3.org/XML.

Stefano Ceri is professor at the Di-
partimento di Elettronica e Infor-
mazione, Politecnico di Milano; he
has been visiting professor at the
Computer Science Department of
Stanford University between 1983
and 1990. His research interests are
focused on extending database tech-
nology to incorporate data distribu-
tion, deductive rules, active rules,
and object-orientation; he is also
currently interested in the integration

between Web and database technologies. He is author of several
books, including The Art and Craft of Computing (Addison-
Wesley, 1997), Advanced Database Systems (Morgan Kaufmann,
1997), and Active Database Systems (Morgan Kaufmann, 1995).

Sara Comai received her Laurea
degree in Ingegneria Gestionale in
1996 from Politecnico di Milano
(Italy). Since 1997 she is a Ph.D.
student in Ingegneria Informatica e
Automatica at the same university.
Her research interests are mainly in
the areas of active databases and
semistructured information represen-
tation and processing.

109

Ernesto Damiani holds a Laurea de-
gree in Ingegneria Elettronica from
Università di Pavia and a Ph.D. de-
gree in Computer Science from Uni-
versità di Milano. He is currently
an assistant professor at the cam-
pus located in Crema of Università
di Milano, and a Visiting Lecturer
at the Computer Science Department
of LaTrobe University in Melbourne,
Australia. His research interests in-
clude distributed and object oriented

systems, semi-structured information processing and soft com-
puting.

Piero Fraternali is an associate pro-
fessor at the Dipartimento di Elet-
tronica e Informazione of Politec-
nico di Milano. He received the Lau-
rea Degree in Ingegneria Elettronica
in 1989, and a Ph.D. in Ingegne-
ria Informatica in 1994, both from
Politecnico di Milano. His main re-
search interest is currently in the
area of the integration of Web and
databases. His research focuses also
on active databases, object orienta-

tion, and software engineering methodologies. He is the author,
with Stefano Ceri, of the book Designing Database Applications
with Objects and Rules: The IDEA Methodology (Addison-Wes-
ley, 1997).

Stefano Paraboschi is an associate
professor at the Dipartimento di
Elettronica e Informazione of Po-
litecnico di Milano. He received the
Laurea Degree in Ingegneria Elet-
tronica in 1990, and a Ph.D. in In-
gegneria Informatica in 1994, both
from Politecnico di Milano. His
main research interests are in the
area of databases, with a focus on
active databases, data warehouses,
and the construction of data-inten-

sive Web sites. He is the author, together with Paolo Atzeni, Ste-
fano Ceri, and Riccardo Torlone, of the book Database Systems:
Concepts, Languages and Architectures (McGraw-Hill, 1999).

Letizia Tanca is professor at the
Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano; she
has been professor at Università di
Verona between 1995 and 1998. Her
research interests concern advanced
database languages and systems, and
currently focus on query languages
for the Web, graphical query lan-
guages, and active database systems.
She is author, with Stefano Ceri and
Georg Gottlob, of the book Logic

Programming and Databases (Springer-Verlag, 1990).

