
ELSEVIER

Distributed cooperative Web servers 1

Scott M. Baker Ł, Bongki Moon

Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA

Abstract

Traditional techniques for a distributed web server design rely on manipulation of central resources, such as routers or
DNS services, to distribute requests designated for a single IP address to multiple web servers. The goal of the distributed
cooperative Web server (DCWS) system development is to explore application-level techniques for distributing web
content. We achieve this by dynamically manipulating the hyperlinks stored within the web documents themselves. The
DCWS system effectively eliminates the bottleneck of centralized resources, while balancing the load among distributed
web servers. DCWS servers may be located in different networks, or even different continents and still balance load
effectively. DCWS system design is fully compatible with existing HTTP protocol semantics and existing web client
software products.  1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Scalable web servers; Document migration; Load balancing

1. Introduction

With the explosive popularity of the Internet and
the World Wide Web (WWW), there is a rapidly
growing need to provide unprecedented access to
globally distributed data sources through the Inter-
net. Web accessibility will be an essential component
of the services that future digital libraries should
provide for clients. This need has created a strong
demand for database access capability through the
Internet [16], and high performance scalable Web
servers [13,20]. As most popular Web sites are ex-
periencing overload from an increasing number of
users accessing the sites at the same time, it is de-
sired that scalable Web servers should adapt to the

Ł Corresponding author.
1 This work was sponsored in part by National Science Founda-
tion Research Infrastructure program EIA-9500991. The authors
assume all responsibility for the contents of the paper.

changing access characteristics and should be capa-
ble of handling a large number of concurrent requests
simultaneously, with reasonable response times and
minimal request drop rates.

A collection of Web documents may be viewed
as a directed graph, where each document is a node
and each hyperlink (or image reference) is a directed
link from one node to another. If there is a way to
distribute this graph amongst many server computers
in such a way that the load is evenly distributed de-
spite the dynamically changing Web access patterns,
then the problem of load balancing, one of the most
important issues of creating a distributed Web server,
has been solved. Our solution will take this graph-
based approach and will be based on the hypothesis
that most Web sites only have a few well-known entry
points (e.g., www.washingtonpost.com) from which
users start navigating through the site’s documents.

The proposed solution is to dynamically mod-
ify the Web documents to change their hyperlink

 1999 Published by Elsevier Science B.V. All rights reserved.



138

connectivity, and thereby distributing the document
graph adaptively amongst several servers. The dy-
namic modifications will be performed automatically
by the Web servers and will require no user in-
tervention. All the well-known entry points will be
maintained at the home servers where the Web doc-
uments originate, while less known internal docu-
ments may be migrated to alternate server computers
which we call co-op servers for load balancing pur-
poses. The home servers and co-op servers can serve
collectively as a distributed cooperative Web server
(DCWS) for the need of Web request processing
with great flexibility and scalability.

There may be many possible situations where
the distributed cooperative Web server can be de-
ployed to handle highly fluctuating Web requests.
Any stand-alone Web server can be supported by
several computers connected together by a local
area network in the same organization. When the
stand-alone Web (home) server is overloaded, some
of the computers can act as co-op servers by off-
loading documents from the home server and de-
livering them on behalf of the home server. For
another example, two or more departmental Web
server machines which work independently in the
usual operational mode, can become a distributed
cooperative Web server; since the relative load may
be different on each departmental Web server de-
pending on the time of year, project deadlines and so
on, any of the lightly loaded servers can be a co-op
server for any of the heavily loaded servers. The
server machines can be geographically distributed. If
an organization runs a number of independent Web
servers for branches in the east and west coasts of
the United States and Asian and European countries,
then the DCWS approach enables the Web servers
to adapt to the changes in geographic distribution
of document requests and the changes due to differ-
ent time zones. It also enables the Web servers to
take advantage of geographic caching of documents
[5].

The distributed cooperative Web server solution
poses the following benefits over traditional systems
based on packet-level manipulation, or domain name
services (DNS) and distributed file systems:
ž Network or packet level manipulation is not nec-

essary. There is no entity (such as a router) that
needs to touch every packet that is transferred

between client and server. This eliminates a sig-
nificant bottleneck present in traditional systems.
ž Instead of implicit load balancing by using cus-

tom DNS servers, the cooperating servers make
use of the connectivity of hyperlinks to directly
control load balancing at the fine-grained level of
documents.
ž The cooperating servers do not need to be lo-

cated within the same administrative domain or
local area network. They may be geographically
distributed and can distribute network traffic over
multiple networks.
ž Adding a new server is easy, flexible, and cost

effective. Any available machine may be added
as a cooperating server, without consideration as
to the location of the machine relative to other
existing servers.
In this paper, we present the design principles

of the DCWS system and the detailed issues of its
prototype implementation. We also demonstrate the
scalable performance of the DCWS system by ex-
tensive experiments with real-life data sets. The rest
of the paper is organized as follows. In Section 2,
we briefly review related work for building scal-
able Web servers. Section 3 presents the motivations
behind the development of DCWS system, and de-
scribes the primary design issues. In Section 4, we
describe the metrics for selecting documents to mi-
grate, and present the detailed process of document
migration and consistency considerations. Section 5
presents experimental results to demonstrate how the
DCWS system works well with real-life data sets.
Finally, in Section 6, we discuss the contributions of
this paper and suggest future work.

2. Background and related work

Various load balancing techniques based on do-
main name service (DNS) have been proposed in the
literature. The NCSA scalable Web server is built
on a cluster of identically configured servers, and
uses round-robin DNS scheduling and Andrew file
system (AFS) for load sharing among the servers
[13,15]. The IBM scalable Web server is built on an
SP-2 parallel system, which is essentially a cluster of
identical RS6000 workstations. The IBM Web server
uses a TCP router instead of DNS scheduling for



139

improved load balancing [11], but its use is limited
to tightly coupled systems such as SP-2.

The presence of heterogeneous Web servers not
only increase the complexity of the DNS schedul-
ing, but also makes a simple round-robin scheduling
not directly applicable. Numerous variations of the
round-robin DNS scheduling have been proposed for
heterogenous Web servers and non-uniform client
distribution. Two-tier round-robin DNS scheduling
divides clients into two classes normal and hot to
handle non-uniform distribution of client requests
[8]. Probabilistic and deterministic algorithms based
on adaptive TTL (time-to-live) approach have been
proposed [7]. Lower TTL values are assigned when
the DNS chooses a less capable server or an address
mapping request comes from a hot client.

Another solution proposed in [4] attempts to de-
velop a distributed scheduling heuristic based on a
multi-variate cost function (CPU, disk and network
utilization), which helps make the decision on task
migration. Two techniques are used for load bal-
ancing: DNS rotation and HTTP URL redirection.
DNS rotation is used for initial load distribution, and
HTTP URL redirection is used to dynamically adjust
network load based on server utilization. A potential
problem with DNS rotation is the development of
‘hot spots’, which lead to serious load imbalances. A
detailed study of the techniques for an online digital
library was reported in [3].

Dynamic server selection [10] is proposed as a
client-based solution, in which clients automatically
determine the best server for a given file without a
priori knowledge of server performance. The tech-
nique relies on replication of Web documents by
proxy servers. It is assumed that a list of proxy
servers exists which contain a given document. A
hybrid buffer management algorithm [20] has been
proposed to balance intra-cluster network traffic and
disk access by dynamically controlling the amount
of data replication. A centralized round-robin router
is used to route requests amongst multiple servers.

The Cisco LocalDirector Cisco systems [19] uses
a virtual server to handle incoming requests at a vir-
tual IP address. The LocalDirector functions as an
intelligent router, routing requests from the virtual IP
address to physical servers at real IP addresses. It is
intended to be a general purpose solution, capable of
handling other services in addition to the Web. No dis-

cussion is given in the white paper as to what extent
the LocalDirector is a bottleneck of the system.

Fast Packet Interposing is a user-level technique
developed in [2] and is used by the MagicRouter to
distribute load. The MagicRouter is used to make a
cluster of servers appear to have a single IP address
without modifications to any servers. Fast Packet In-
terposing is used to modify network addresses within
the data packets that pass through the MagicRouter.
Fault tolerance and load balancing are stressed by
the paper. The MagicRouter is expected to be a bot-
tleneck as all packets must arrive through it as a
central resource.

A technique called dynamic packet rewriting
(DPR) [6] is used to distribute load. DPR attempts
to route requests at the IP level, by manipulating
the methods in which an IP address is mapped to
a host. It is a distributed algorithm, and attempts
to eliminate the bottleneck of a centralized solu-
tion, such as a centralized round-robin router. Each
host acts as both a Web server and a packet-level
router for incoming requests. DNS rotation is used
as an initial partitioning method to achieve a rough
distribution.

3. Design principles

In this section, we present the motivations be-
hind the development of distributed cooperative Web
server (DCWS), and describe the primary design
issues to construct a flexible, fully symmetric and
scalable Web server that achieves dynamic load bal-
ancing.

3.1. Entry-points hypotheses

Most Web sites only have a few well-known entry
points for the site. A well-known entry point is a
URL which is published to the rest of the world.
For example, typical digital library applications such
as newspaper sites, article archives and customer
information services would publish the URL of their
index pages to the world rather than publishing the
URL of every single page in the sites. Specifically,
the DCWS solution proposed in this paper is based
on the following observations and generalizations
about the organizations of and access patterns to



140

the Web documents:
ž Web documents are either listed (well-known en-

try points) or not. Web pages that are not well-
known are usually only accessed by a particular
client by first accessing some well-known page
and then following a path of hyperlinks from the
well-known page to the destination page.
ž The URLs of images embedded within a docu-

ment are seldom published. Users need not know
the URLs of the embedded images because the
images are fetched automatically along with the
corresponding Web document without user inter-
vention. Furthermore, images constitute a large
portion of Web bandwidth due to their compara-
tively large size.
ž The use of frames in most modern Web sites

promotes a well-known frame template that is
published along with several seldom-published
internal frame pages. The frame template is usu-
ally small and easily hosted by the home server,
while the internal frame pages may be large and
can be migrated to other servers for load balanc-
ing purposes.
ž In this setting, users do not care what the text of

the URL is for internal pages within the site, as
they primarily access the site through the well-
known entry point.
There are a few exceptions to the above rules

that must also be considered. Most notable are Web
search indexes and user bookmarks. Web search
indexes are maintained by large search engines such
as AltaVista and Infoseek. These search engines may
make public any URLs contained within a certain
Web site. User bookmarks are URLs manually stored
by end-users on their computers. Thus any user may
potentially bookmark any page. However, it should
be noted that there are many ways to force them
to come in the front door only; it can be done
either through cookies, or through adding tokens or
sequence numbers to the URLs (generated by CGI
scripts of JavaScript).

The proposed solution will assume that most re-
quests follow the common pattern of arriving at a
well-known entry point, while a minority of requests
may be bookmarks or search site retrievals, and thus
the solution will attempt to optimize the common
case while providing only a minimal penalty in the
less-common case.

3.2. Document migration

All documents originally reside on a home server.
The home server is where the administrator or au-
thors have placed the documents during the process
of creating them. A permanent copy of the original
document will always be maintained on the home
server for consistency and robustness purposes. All
well-known entry points will be maintained on the
home server so that the users may see a consistent
view of the Web site. Documents or images other
than the well-known entry points may be migrated to
co-op servers. A co-op server is another server com-
puter which has been designated as a server which
will share the load of the home server 2.

Pertaining to the document migration, it is impor-
tant to note that the document hyperlinks are modi-
fied in such a way that the load is balanced among
the home and co-op servers by redirecting user re-
quests from one to another. In Fig. 1, for example,
documents A–E and F–K were initially hosted by
two different servers. The numbers in parentheses
presents the load (i.e., hits) associated with individ-
ual documents. Since the first server was overloaded,
the document D was chosen to be migrated to the
second server. In this example, the second server
became the co-op server for the document D.

We adopt lazy migration policy in an attempt to
minimize overhead incurred by physical data migra-
tion. Further details about the process of document
migration will be discussed in Section 4.

3.3. Document graphs for load balancing

The distributed cooperative Web server (DCWS)
is designed to be fully symmetric, in the respect that
each server may be both a home server for its own
documents as well as a potential co-op server for
sharing the load of some other home server. There
are two key data structures that must be managed
by the DCWS servers in order that they may share
and balance the load amongst participating servers.
First, each server must have the information of the
local documents and the link structure among the

2 In principle, a document can be replicated to more than one
co-op servers, but the current prototype implementation allows
each document to be migrated to only one co-op server.



141

Fig. 1. Illustration of document migrations for load balancing.

documents. All the information is stored in a lo-
cal document graph, and each server is responsible
for maintaining the graph for any documents stored
within it. Second, the servers must globally commu-
nicate load information amongst one another so that
intelligent load-balancing decisions may be made.
This information is global in nature, but each node
maintains its own local view of the global state.
The best-effort global load information is stored in a
global load table on each server machine.

3.3.1. Local document graph
The local document graph (LDG) consists of a set

of tuples:

(Name, Location, Size, Hits, LinkTo,
LinkFrom, Dirty).

The Name field is simply the name of the document,
as it is requested by the user. It is also directly related
to the name of the file on the server’s local disk, so
that the server knows where the contents of the doc-
ument are located. The Location indicates which
server presently is hosting the document, whether it
be the home server where the document originated,

or a co-op server that the document has been mi-
grated to. The Size and Hits are used for load
balancing computations, in order to determine which
documents should be migrated. The LinkTo is a list
of documents that the current document has hyper-
links pointing to; the LinkFrom is a lists of doc-
uments that have hyperlinks pointing to the current
document. The Dirty bit is used to indicate whether
some of the tuple’s LinkTo documents have been
migrated, thus requiring the system to regenerate
the document with some altered hyperlinks. Table 1
shows the local document graph entries stored in the
first server after the document D is migrated to the
second server. Note that some information such as
document sizes is left out for visual clarity.

The local document graph is computed upon ini-
tialization of the Web server by scanning its disk
and parsing the documents. It is intended to be a
dynamic structure and can be modified over time if
the content of pages is changed by an administrator.
Section 4 describes how the local document graph is
updated when a document is migrated. A hash table
is utilized to quickly find a tuple given the document
name. It is important to optimize with a hash table



142

Table 1
LDG entries for the documents on the Server #1 in Fig. 1b

Name Location Size Hits LinkTo LinkFrom Dirty

A #1 – – C nil 0
B #1 – – {D,E} nil 1
C #1 – 100 nil A 0
D #2 – 200 nil {B,E} 0
E #1 – 50 D B 1

because retrieving the tuple is necessary for each re-
quest that the server processes. The local document
graph is assumed to be small enough that it can be
stored entirely in memory. If this is not the case,
then it should be a straightforward process to store
the structure on disk and use memory as a cache for
frequently accessed tuples.

3.3.2. Global load table
The global load table (GLT) stores the overall

state of the server group. Although the load infor-
mation is global in nature, each server maintains a
local copy of the load information and attempts to
maintain data using a best-effort consistency mech-
anism. The global load table consists of a set of
tuples:

(Server, LoadMetric).

The Server is the name (or IP address) of the
server computer. The LoadMetric is some measure-
ment of the load that the server is experiencing and
is used for load balancing purposes. For example, the
total number of requests per minute could be used as
a satisfactory load metric. Each server may trivially
compute its own load information tuple by recording
its LoadMetric as user requests bombard the server.
The interesting point is how load information is
communicated from one server to another.

Since the network is already presumably filled
with many user requests and responses, it is desired
not to initiate any additional data transfers simply
for the purpose of communicating load information.
Such a solution would be wasteful in a system where
network bandwidth is an important resource. Instead,
the solution that was chosen was to piggyback the
load information onto existing HTTP transfers. The
idea of piggybacking information has been used for
cache coherency by server invalidation [14].

The HTTP protocol allows for inserting extension
headers into the existing protocol semantics 3. Ex-
tension headers may be included in both the HTTP
request (client to server) and the response (server
to client). Thus, it is possible to insert an arbitrary
amount of bi-directional information into an exist-
ing HTTP transaction. Amongst the DCWS servers,
transfers are already occurring frequently to migrate
documents between the servers, and these transfers
provide an excellent opportunity to also communi-
cate the load information by piggybacking. Thus, no
additional communication channels are required for
the means of communicating load information.

In the unlikely case that load information is not be-
ing communicated frequently enough, then it is pos-
sible to insert an artificial transfer to communicate
load information. This would incur additional over-
head since the transfer would not have occurred nor-
mally. A special pinger thread is present to watch for
out-of-date information and automatically generate
artificial transfers to bring the information up to date.

Fig. 2 depicts the functional modules and data
structures of the DCWS system, and illustrates ac-
cess requests from Web clients and interaction be-
tween home and co-op servers to process the re-
quests. Further details of the multithreaded imple-
mentation of the DCWS prototype will be described
in Section 5.

4. Process of document migration

In this section, we describe the metrics for select-
ing documents to migrate, and the detailed process

3 These extension headers are ignored by any server which does
not understand them, but may be interpreted by a server that
does understand the extension header [12].



143

Fig. 2. Functional diagram of DCWS.

of migrating documents including the lazy migra-
tion policy, hyperlink modification, load information
update, and consistency considerations.

4.1. Metrics for selecting documents to migrate

There may be several conditions and factors that
should be considered in determining which docu-
ments be migrated. Among others, we have chosen
a few criteria for selecting documents to migrate
such that load balancing can be achieved with a
small number of document migrations and low over-
head. The algorithmic procedure for the document
selection is presented in Algorithm 1 in Fig. 3.

It is typical that well-known entry points will
provide users with an external view of the server.

Users will use the well-known entry points to gain
access to the server. If any of the well-known entry
points is migrated to a co-op server, the home server
should redirect every user request to the co-op server.
Thus, step (ii) is necessary to maintain a consistent
view of the home server and to avoid burdensome
request redirections.

Step (iii) is important because we want to balance
the work load by migrating as few documents as
we can. In other words, the access frequency of
the document should be high enough to justify the
migration process because migrating a document that
receives only a few hits does not do much good for
load balancing.

If a document is migrated from its home server
to a co-op server, all the documents pointing to the



144

Algorithm 1
Input:

Output:

end Algorithm

Given a local document graph of a home server, and a
threshold of load.

This algorithm selects a document to be migrated to a co-
op server.
(i) Let the candidate document set be a set of all the

documents in the graph.
(ii) Remove all the wellknown entry points from . If is empty,

return .
(iii) Remove documents from if their load (i.e., value in

the tuple) is less than the threshold value . If is empty,
reset it to the previous set and repeat this step with reduced
value of until becomes nonempty.

(iv) Select a document (or more) pointed to by a minimal number
of documents that do not reside on the home
server.

(v) If two or more documents are selected in step (iv), pick one
that points to a minimal number of documents.

Document selection for migration

T

C

C C

C
T C

T C

nil
Hits

LinkFrom

LinkTo

Fig. 3. Document selection for migration.

migrated document (i.e., the documents in the Link
From list) must be modified to update the hyper-
links and connectivity information. Step (iv) seeks
to minimize additional network traffic that would be
required to update the hyperlinks in the LinkFrom
documents on remote servers. Step (v) allows a doc-
ument that points to a minimal number of LinkTo
documents. This promotes future compliance with
the goal of step (iv).

4.2. Lazy migration

If it is determined that one or more document
migrations should occur, then the following process
is used:
ž The server with the lowest LoadMetric value is

selected from the global load table. This can be
done with a simple scan of the table. This server
will become a co-op server for the home server
and will host the migrated documents.
ž The local document graph is updated accordingly.

Specifically, the Location field of the tuple for
the document is modified to reflect the new loca-
tion. For each document referenced by the Link
From field of the tuple, the Dirty bit is set for

that tuple. This will cause the documents refer-
enced by the LinkFrom field to be regenerated
next time a request arrives for one of them.
Through the above steps, the selected documents

are migrated only logically. The physical document
migration is deferred until it is actually required. We
call this a lazy migration of documents.

To understand the physical migration process, it
is necessary to discuss the behavior of the DCWS
servers in detail. When a request arrives at a server,
it may be one of two cases. Either it is a request
for a document that is local to the server (i.e., the
server is a home server for the document), or the
request is for a document that has been migrated to
the server (i.e., the server is a co-op server for the
document).

If the request is for a migrated document, then
there are two sub-conditions that exist:
ž The co-op server does not have a copy of the

document on its local disk. In this case, the co-op
server must initiate a HTTP session with the
document’s home server to retrieve the document.
Once the document is retrieved from the home
server, a copy is stored on the co-op server’s local
disk for future purposes, and the contents are



145

also forwarded back to the user that initiated the
original request.
ž If the co-op server does have a copy of the

document on its local disk, then the document
must have already been physically migrated, and
the copy on the co-op server’s local disk can be
sent to the end user.

4.3. Document parsing and reconstruction

To modify the hyperlinks embedded in a docu-
ment, a HTML parser builds a simple parse tree from
an HTML source file of the document. Any modified
links are then replaced in the parse tree, the parse
tree is turned back into a stream of HTML tokens,
and then written back to its HTML source file. Since
parsing and regeneration of documents is expected to
be a time intensive process, it is desired to postpone
the process until the latest time possible in order to
eliminate any redundant or unnecessary work. The
Dirty bit of a document’s tuple in the local docu-
ment graph is used as an indication as to whether the
document needs to be parsed and regenerated with
some modified links.

When a request arrives to retrieve a document,
if the Dirty bit is not set, then the document is
assumed to be up-to-date and a copy from disk is
retrieved. If the Dirty bit is set, then the document
is considered to be outdated and will be parsed,
regenerated, a new copy will be written to disk, and
the Dirty bit will be reset.

5. Experiments

5.1. Prototype development

The DCWS server is constructed in a modular
fashion using multithreaded paradigm. Components
include a multithreaded HTTP front-end, which is
responsible for accepting and parsing requests, a
worker module, which utilizes multiple threads to
process and respond to requests from the front-
end, and a statistics module, which is responsible
for maintaining Global Load Table. The multithread
support was implemented with portability as a chief
concern. The server can run on Linux using the Posix
pthreads library as well as Microsoft Windows prod-

ucts using the Win32 Thread API. The current Linux
implementation has been tested using Linux kernel
version 2.0.30 and pthreads version 0.5.

A general purpose HTML parser has been ported
from another project. A general purpose HTML
parser has been used to build simple parse trees
for HTML source files. Although the parser is not
optimized for the DCWS prototype, it is expected
that an optimized parser would only improve per-
formance by a constant amount and would not af-
fect the speed up or scale up performance of the
server.

5.2. Experimental settings

Testing and benchmarks were performed on a
cluster of 64 Intel Pentium workstations with 200
MHz clock rate. Each workstation has 128 MB of
memory and 2 or 4 GB of disk storage. The work-
stations are connected by a 100 Mbps switched Eth-
ernet network. The switch can handle an aggregate
bandwidth of 2.4 Gbps in an all-to-all type commu-
nication. A server process (either home or co-op) ran
on each of the Pentium workstations. Each server
process contained 12 worker threads as well as a
front-end thread and a pinger thread. Each home
server was configured to migrate files at a maximum
of one file per 10 seconds. No single co-op server
was allowed to accept more than one migrated file
every 60 seconds. This time interval is necessary to
avoid overloading a co-op server by migrating doc-
uments too quickly, before it has a chance to adjust
and recalculate its load statistics. The co-op servers
were configured to validate migrated documents for
consistency every 120 seconds. The pinger thread
was assigned a sleep value of 20 seconds, in order to
guarantee that all statistical data was accurate within
20 seconds. The server configuration parameters are
summarized in Table 2.

5.2.1. Client benchmark configuration
A custom benchmark was constructed due to

the unique property of the distributed cooperative
Web servers that the hyperlinks of documents may
be modified dynamically. Conventional benchmarks
such as SPECWeb96 [9] are not suitable as they are
designed to request documents without regard to the
dynamically changeable hyperlinks contained within



146

Table 2
Setting of server parameters

Description Parameter value

Number of front-end threads (Nfe) 1
Number of pinger threads (Nπ) 1
Number of worker threads (Nwk) 12
Socket queue length for backlogged requests (Lsq) 100
Statistics re-calculation interval (Tst) 10 seconds
Pinger thread activation interval (Tπ) 20 seconds
Co-op server document validation interval (Tval) 120 seconds
Home server document re-migration interval (Thome) 300 seconds
Minimum time for migrations to the same co-op server (Tcoop) 60 seconds

the delivered documents. For the same reason, we
were not able to use server traces.

The benchmark is intended to correspond to the
real-world behavior that most clients exhibit while
they are accessing the Web. Web clients running
browsers typically maintain a client-side cache. This
client side cache effects access patterns significantly
and reduces temporal locality [1]. With the custom
client benchmark, we sought to simulate this caching
behavior by building a client-side cache into the
benchmark program. The cache is maintained for the
duration of each simulated access sequence (1–25
document requests) of the benchmark and reset after
each sequence.

The effects of the client cache on the DCWS
system performance are expected to be two-fold:
(1) Hot-spot behavior of images linked to multiple
pages is reduced, and (2) redirections are increased
due to increased stale link data being stored client-
side. Both of these effects are real-world phenomena
which increase the realism of the DCWS custom
client benchmark.

The client benchmark program is multithreaded
and includes one main thread to load a document and
four additional threads to load images in parallel.
The parallelism is intended to simulate the actions
of existing browsers, such as Netscape, which make
use of multiple threads. Approximately eight in-
stances of the client benchmark were configured to
run on each client benchmark workstation. The num-
ber of client benchmark processes was selected to
consume all available CPU and network resources
of the client machine. The throughput produced per
client workstation on the median dataset, LOD, was
approximately 700 connections per second and 1.7

Mega bytes per second. The LOD data set will be
described later in this section. Twenty-five worksta-
tions were configured as benchmark machines. The
detailed procedures that performed by the custom
benchmark is outline in Algorithm 2 in Fig. 4.

5.2.2. Request drop behavior
It is likely that the request arrival rate might

be often higher than the request service rate. The
backlogged requests are queued in the socket queue
at the server, and the socket queue may grow beyond
the preset maximum queue length (see Table 2).
Then, the connection is dropped gracefully with a
503 error response. This is the most graceful way of
dropping requests, but also the most load intensive
method for servers. When a 503 is received, a client
has an exponential back-off and retry to minimize
server load. That is, a client thread sleeps for a
second at the first drop, sleeps for two seconds at
the second drop, sleeps for four seconds at the third
drop, and so forth.

5.2.3. Data sets
We have chosen four real-world data sets with

different link and hot spot characteristics in order
to exercise the DCWS system under a variety of
situations. Specific information and content of these
data sets are available at http://www.cs.arizona.edu/
dcws. The fourth data set is the Sequoia 2000 storage
benchmark data [18] publicly available in http://
epoch.cs.berkeley.edu:8000/sequoia/benchmark/.
ž MAPUG Mailing List Archive: This data set is

comprised of 1534 formatted email messages con-
taining a total of 28,998 links and an aggregate
size of 5918 Kbytes. The email messages are



147

Algorithm 2
do forever begin

for to do begin

end
end

end Algorithm

reset cache
set a randomly selected well-known entry point
set random(1...25)

request a document from its server if it is not in the cache.
request all embedded images in parallel (using helper threads).
wait until all the requested documents arrive.
parse the document and select a new link from the document
set new link

Custom Benchmark

current_url
no_steps
i=1 no_steps

current_url

current_url

ß

ß

ß

Fig. 4. Outline of the simulated customer threads.

threaded and indexed by date, subject, and author.
Six bitmapped images are utilized in the doc-
uments to represent navigational buttons. Since
these six bitmapped images are linked to nearly
all of the documents, they have a high request rate
and form significant hot spots.
ž SBLog Web Statistics: Generated by an automated

statistics program, this data set includes 402 doc-
uments, 57,531 links, and has an 8468 Kbyte
aggregate size. The link graph of this data set
is tree-like in nature with a few dozen summary
and index pages as internal tree nodes and the
bulk of the pages occupying leaf nodes. A single
JPEG image is utilized in constructing bar-graphs
in nearly all of the pages and forms a significant
hot spot due to its high request rate.
ž LOD Role-Playing Adventure Guide: This dataset

is comparatively smaller than the others, with
349 documents, 1433 links, and 750 kbytes of
data. It is highly graphical in nature, with 200
of the 349 documents being JPEG images. This
dataset was chosen to represent the real-world
shift of Web site design to increasing graphical
complexity. Although the large number of images
do not present as severe hot spots as the other data
sets, several of the index pages are significantly
hotter than the remaining pages and images.
ž Sequoia benchmark data: The raster data for

Sequoia 2000 storage benchmark contains 130
AVHRR (Advanced Very High Resolution Ra-
diometer) image files from NOAA satellite. The

images are compressed and in the 1–2.8 Mbytes
range. We created an HTML front-end page to the
Sequoia raster data set that includes a hyperlink
to each image file.

5.3. Experimental results

Among many ways to evaluate the performance
of Web servers, there seems to have emerged a
consensus that three most important measures are
connections per second (CPS), bytes transferred per
second (BPS), and round-trip time (RTT) [15,17].
However, the third measure, round-trip time is dif-
ficult to measure for an operational Web server and
depends on various performance factors such as net-
work overhead and bottleneck, which are not directly
related to the Web server itself. Thus, in our experi-
ments, we have decided to use the first two measures
to evaluate the performance and scalability of the
DCWS prototype system.

5.3.1. Peak load
One of the most critical challenges for Web

servers is to deal with the peak load. To accurately
measure the peak performance of the DCWS, we
averaged the bytes per second (i.e., throughput) and
connections per second measures for a fixed number
of concurrent simulated clients (i.e., threads running
on clients workstations). Increasing the number of
concurrent clients from 16 up to 400, we repeated
the same experiment and obtained averages of the



148

0

2000

4000

6000

8000

10000

12000

14000

16000

16 48 80 112 144 176 208 240 272 304 336 368 400

A
gg

re
ga

te
 c

on
ne

ct
io

ns
/s

ec

The number of concurrent simulated clients

DCWS Aggregate Connections Per Second

1 Server
2 Servers
4 Servers
8 Servers

16 Servers

0

5

10

15

20

25

30

35

40

16 48 80 112 144 176 208 240 272 304 336 368 400

A
gg

re
ga

te
 M

by
te

s/
se

c

The number of concurrent simulated clients

DCWS Aggregate Bytes Per Second

1 Server
2 Servers
4 Servers
8 Servers

16 Servers

(a) (b)

Fig. 5. DCWS Performance from LOD data set with increasing numbers of concurrent clients.

measures. The third data set (LOD) was utilized for
this set of experiments due to the fact that its graph-
ical nature is most representative of real-world Web
sites. The large number of images provide an evenly
distributed access pattern and help demonstrate the
near-linear scalability of the DCWS system.

Fig. 5a,b shows BPS and CPS measures, respec-
tively, as compared to number of concurrent clients,
with different numbers of servers being used. In
both figures, the performance measures increased
almost linearly until the peak was reached. After
the peak was reached, the measures remained sta-
ble, presumably due to dropping excessive requests
beyond the server capability. On the other hand, it
is quite obvious that the DCWS prototype performs
in a scalable way. Whenever the number of servers
was doubled up, the peak performance was improved
proportionally. For example, with 8 servers, the peak
performance of about 18.6 Mega BPS and 7150 CPS
was reached at 176 clients. With 16 servers, the peak
performance of about 39.4 Mega BPS and 15150
CPS was reached at 368 clients.

5.3.2. Scalability and hot spots
Hot spots (i.e., extremely popular documents or

images) limit the parallelism of most scalable Web
server systems. Since DCWS is able to control which
documents are served by which co-op servers, ex-
tremely hot documents are automatically partitioned
to disjoint co-op servers, effectively sharing the

set of hot documents amongst many co-op servers.
Fig. 6a,b shows the peak performance of the DCWS
prototype measured in BPS and CPS respectively, as
the number of servers is increased, with four dif-
ferent data sets being used. With LOD and Sequoia
data sets, both measures were found to be very close
to linear up to 16 servers, which was the maximum
number of available servers for the experiment.

However, we have observed less scalability per-
formance from the other two data sets SBLog and
MAPUG. For both of these datasets, the DCWS
system scaled well up to eight server configuration,
but suffered a significant degredation in scalability
when the number of servers was increased from 8 to
16. We performed a detailed manual analysis of the
MAPUG dataset and were able to determine that the
cause of this was the extreme hot spot behavior of the
six JPEG images present in the data set. Although
the images were successfully migrated to disjoint
co-op servers by DCWS, each image had a high
access rate which caused several of the co-op servers
to peak when operated in the 16 server test. We are
presently working on a solution to extend scalability
by replicating extremely hot documents on multiple
co-op servers, which we expect will allow continued
scalability in the presence of hot spots.

From this set of experiments, we acknowledge
that data distribution and data access characteristics
have significant impact on the performance, and
hot spots can limit the potential parallelism of the



149

10

100

1000

10000

1 2 4 8 16

A
gg

re
ga

te
 c

on
ne

ct
io

ns
/s

ec

The number of participating servers

DCWS Aggregate Connections Per Second

LOD
MAPUG

SBLog
Sequoia

10

100

1 2 4 8 16

A
gg

re
ga

te
 M

by
te

s/
se

c

The number of participating servers

DCWS Aggregate Bytes Per Second

Sequoia
SBLog

MAPUG
LOD

(a) (b)

Fig. 6. DCWS performance from different data sets with varying numbers of cooperating servers.

DCWS system. We conjecture that the only way to
get around this problem is to adopt replication of
hot spots, which is not currently implemented in the
DCWS prototype.

5.3.3. CPS vs. BPS
The measurements of CPS and BPS are related

by the size of the documents involved and connec-
tion overhead. Executing a Web transaction via TCP
connections requires exchange of several connection
setup and tear-down packets in addition to the pack-
ets used to transfer the actual data. Thus, while a
small file size increases CPS by reducing the number
of bytes per transfer, it also decreases the overall
BPS by wasting more bandwidth on additional con-
nection overhead packets. This is corroborated by
the results presented in Fig. 6a,b. The highest BPS
was observed from the Sequoia data set and followed
by SBLog, MAPUG and LOD data sets, which is the
decreasing order of the data sets in terms of average
size of documents in the data sets. As we expected,
in contrast, the CPS measures were observed in the
reverse order.

Since real-world Web transactions are fairly small
[5]. we chose to use CPS as a balancing metric rather
than BPS in Section 4. On the other hand, it is pos-
sible that in a system which uses significantly larger
file sizes (such as the Sequoia storage benchmark
data set), BPS may be a better load balancing metric.
Since the connection setup and tear-down overhead

is amortized by the large file size, BPS can rep-
resent load more accurately in a more fine-grained
measurement than CPS.

6. Conclusion and future work

We have designed and implemented a prototype
system of the distributed cooperative Web server
(DCWS). The DCWS system is based on dynamic
manipulation of the hyperlinks embedded in Web
documents in order to distribute access requests
among multiple cooperating Web servers. We have
analyzed the performance of the DCWS prototype
system with real-life data sets including the Sequoia
storage benchmark data.

The experiments show that the DCWS system
has a high potential to achieve linear scalability
by effectively avoiding the bottleneck of centralized
resources such as disk and network bandwidths. The
overhead involved in hyperlink modifications was
negligible compared with the improved performance
gained by utilizing distributed servers. It has been
shown that without the presence of the hot spots
the peak performance was scaled almost linearly
up to 16 cooperating servers. The load was evenly
distributed among the servers and load balancing
was achieved faster than linearly from a cold start.
We conclude that the DCWS system proposed in this
paper is a viable solution to building a scalable Web



150

server in both locally and geographically distributed
environments. As an example, the DCWS system can
be used to integrate a group of independent servers
to build a federated Web server in order to archive
large-scale images and scientific data being produced
and stored in geographically dispersed locations.

We recognize that there still remain several issues
for further study of the DCWS system development.
We have not taken into account the effects of user
think time in the custom client benchmark and we
have not used actual access logs for the experiments.
These considerations may enhance the understanding
of the DCWS system performance in more realistic
situations. We plan to carry out further experiments
in order to evaluate policies for document migration
and consistency, and tune the performance parame-
ters in geographically distributed and heterogenous
environments. We also plan to extend the current
implementation of the DCWS system so that it can
handle hot spots by replicating popular documents
in a controlled manner, and investigate the effects of
initial data distribution on the potential parallelism
and scalability.

References

[1] V. Almeida, A. Bestavros, M. Crovella and A. de Oliveira,
Characterizing reference locality in the WWW, in: 4th Int.
Conf. on Parallel and Distributed Information Systems,
Miami Beach, FL, 1996, pp. 92–103.

[2] E. Anderson, D. Patterson and E. Brewer, The Magic-
Router: an application of fast packet interposing, submitted
for publication, http://http.cs.berkeley.edu/eanders/projects/
magicrouter/.

[3] D. Andresen, T. Yang, O. Egecioglu, O. Ibarra and T.
Smith, Scalability issues for high performance digital li-
braries on the World Wide Web, in: Proc. ADL’96 Forum
on Research and Technology Advances in Digital Libraries,
1996, Washington, DC, pp. 91–100.

[4] D. Andresen, T. Yang and O.H. Ibarra, Toward a scalable
distributed WWW server on workstation clusters, Journal
of Parallel and Distributed Computing 42 (1997) 91–100.

[5] M.F. Arlitt and C.L. Williamson, Internet Web servers:
workload characterization and performance implications,
IEEE/ACM Transactions on Networking 5 (1997) 631–645.

[6] A. Bestavros, M. Crovella, J. Liu and D. Martin, Distributed
packet rewriting and its application to scalable server archi-
tectures, Technical Report TR-98-003, Feb, 1998, Boston
University, Boston, MA, http://www.cs.bu.edu/techreports/
98-003-dpr.ps.Z.

[7] M. Colajanmi and P.S. Yu, Adaptive TTL schemes for

load balancing of distributed Web servers, ACM Sigmetrics
Performance Evaluation Review 25 (2) (1997) 36–42.

[8] M. Colajanmi, P.S. Yu and D.M. Dias, Scheduling algo-
rithms for distributed Web servers, in: Proc. 17th Int. Conf.
on Distributed Computing Systems, Baltimore, MD, 1997,
pp. 169–176.

[9] SPECweb96 Benchmark, Standard Performance Evaluation
Corporation, SPECweb96 Benchmark, April, 1996, http://w
ww.specbench.org/osg/web96/.

[10] M.E. Crovella and R.L. Carter, Dynamic server selection
in the Internet, in: 3rd IEEE Workshop on the Architecture
and Implementation of High Performance Communication
Subsystems (HPCS’95), 1995 (also available as TR-95-014,
Boston University, http://www.cs.bu.edu/faculty/crovella/pa
per-archive/hpcs95/paper.html).

[11] D.M. Dias, W. Kish, R. Mukherjee and R. Tewari, Scalable
and highly available Web server, in: Proc. IEEE COMP-
CON Conf. on Technologies for the Information Super-
highway, 1996, pp. 85–92.

[12] R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, L. Masinter,
P. Leach and T. Berners-Lee, Hypertext Transfer Protocol
– HTTP/1.1, Internet Draft, 1997, http://www.ietf.cnri.resto
n.va.us/internet-drafts/draft-ietf-http-v11-spec-rev-03.txt.

[13] E.D. Katz, M. Butler and R. McGrath, A scalable HTTP
server: the NCSA prototype, Computer Networks and ISDN
Systems 27 (1994) 155–164.

[14] B. Krishnamurthy and C.E. Wills, Piggyback server invali-
dation for proxy cache coherency, Computer Networks and
ISDN Systems 30 (1998) 185–193.

[15] T.T. Kwan, R.E. McGrath and D.A. Reed, NCSA’s World
Wide Web server: design and performance, IEEE Computer
28 (1995) 68–74.

[16] T. Nguyen and V. Srinivasan, Accessing relational databases
from the World Wide Web, in: Proc. 1996 ACM-SIGMOD
Conference, 1996, Montreal, Canada, pp. 529–540.

[17] V.N. Padmanabhan and J.C. Mogul, Improving HTTP la-
tency, Computer Networks and ISDN Systems 28 (1995)
25–35.

[18] M. Stonebraker, J. Frew, K. Gardels and J. Meredith, The
SEQUOIA 2000 storage benchmark, in: Proc. 1993 ACM-
SIGMOD Conference, Washington, DC, 1993, pp. 2–11.

[19] Cisco System, Scaling the Internet Web Servers, 1997,
White Paper, http://www.cisco.com/warp/public/751/lodir/s
cale_wp.htm.

[20] S. Venkataraman, M. Livny and J.F. Naughton, Memory
management for scalable Web data servers, 13th Int. Conf.
on Data Engineering, Birmingham, UK, 1997, pp. 510–519.

Scott M. Baker is an independent
software consultant and received his
Bachelor and Master of Science de-
grees from the University of Ari-
zona. His interests include network-
ing, graphics, and distributed infor-
mation systems.



151

Bongki Moon is an assistant profes-
sor in the Department of Computer
Science at the University of Arizona.
His current research interests include
high performance spatial databases,
scalable Web servers, data mining
and warehousing, and parallel and
distributed processing. He received
his PhD degree in Computer Science
from University of Maryland, Col-
lege Park, in 1996, and his MS and
BS degrees in Computer Engineer-

ing from Seoul National University, Korea, in 1985 and 1983,
respectively. He worked for Samsung Electronics Corp., Korea,
as a member of the research staff at the Communication Systems
Division from 1985 to 1990.


