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e Introduction to NLParsing (Collins)

e "A statistical Model for Parsing and Word-Sense Disam-
biguation” (Bikel)

e "Multilingual Statistical Parsing Engine” (Bikel)
e References
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PARSING

e Fundamental NLP problem
e Sentence ~~ Parser ~~ ParseTree

e State of the art NLParsing systems = ML Probabilistic
Parsing Techniques

— Training sets = {(Sentencel, Treel); (Sentence?,
Tree?2); ...; (SentenceN, TreeN)} = Parameter esti-
mates

— Test sets = model evaluation
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NL PARSING PROBLEMS

e Ambiguity
— POS ambiguity (e.g. saw (verb) vs. saw (noun))
— PP attachment ambiguity

— Coordination btw different words in a sentence
e WSJ statistics

— average sentence length: 23 words
— sentences over 30 words: 26%

— sentences over 40 words: 7%
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APPROACHING THE NL PARSING PROBLEM

e Standard Approaches (Rule-Based)

— hand-crafted grammar + lexically specific info

— selectional restrictions (e.g. eat & +food" and apple
> +food) ~ disambiguation

— problems with selectional restrictions

% vocabulary and grammar size(e.g. > 24,444 distinct
words in 40,000 sentences of WSJ)

* theoretical problems

— (MUC-6, 1995) — none of the five best systems used
full-parsing

word feature
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APPROACHING THE NL PARSING PROBLEM (cont’d)

e Machine-Learning Approaches (Statistical Methods)

| Comenss — treebank: {(sentence, parse-tree), ...}

— PCFG systems = disappointing results

44 »» . .
44“ — Other directions
increased structural sensitivity models
< >
Page 7 of 48
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partially supervised training algs.
probabilistic versions of lexicalised grammars

* X X %

history-based models
— state of the art”: SPATTER parser
tested on WSJ

no hand-crafted grammar; treebank trained

84.5/84.0% LP /LR — section 23 of the Penn WSJ treebank (non-
lexicalised PCFGs ~ 72% avg. LP/LR)

params conditioned on lexical information

*

*

*

*

“Magerman, 1995
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APPROACHING THE NL PARSING PROBLEM (cont’d)

e Machine-Learning Approaches (Statistical Methods®)

— D. Magerman’s "Statistical decision tree models for parsing” (1995)

— M. Collins’ "Three generative lexicalised models for statistical pars-
ing” (1997)
— BBN’s "SIFT” system (1998, derived from Model 2 of Collins)

— M. Collins” "Head-Driven Statistical Models for Natural Language
Parsing” (1999)

— E. Charniak’s "Maximum entropy-inspired parser” (2000)
— D. Chiang’s "Stochastic TAG parser” (2000)

— LCC’s parser (2002)

— D. Bikel’s "Multilingual Statistical Parsing Engine” (2002)

?1995 — nowadays
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A STATISTICAL MODEL FOR PARSING AND WORD-SENSE DISAMBIGUATION"

e first attempt (2000)

e performance metrics: 84.0/67.3% LR/LP vs. 78.6% inter-
annotator agreement (gold standard)

“the core of Bikel’s parser
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MOTIVATION FROM PREVIOUS WORK (PARSING)

o previous parsers success

— computing machinery development
— treebanks (e.g. Penn Treebank)
— ML techniques for NLP (POS tagging and PP attachment)

— probabilistically modeled lexicalisation of grammar for-
malisms

— all recent successful parsers use "bilexical dependencies”

+ attach probabilities to parser moves (Magerman 1997, Ratna-
parkhi 1997)

* lexicalised PCFG variety (Collins 1997, Charniak 1997)
* involve "head-modifier relations”
+ [lexical head] semantics reduces parsing ambiguity!

— WordNet + hypernym structure = soft-clusters



Home Page
Title Page

Contents

MOTIVATION FROM PREVIOUS WORK (WSD)

4« 44

e syntactic context 4+ dependency structures = WSD
< >

e unsupervised WSD + WordNet based similarity heuristic
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THE MODEL
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e core = BBN’s SIFT
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“(e.g. 1.-7.)
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THE MODEL (cont’d)

e formally

— P — LnLn—l 50 c LlHRl T Rn_an

— P, H, L; and R; are lexicalised nonterminals of the form
X <w,t, f>:

* X = traditional CFG nonterminal

x < w,t, f >= word - POS - word-feature (the
head of X)

e H = head constituent of P
e L;/R; = left/right modifier constituents of P w.r.t. H
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PROBABILITY STRUCTURE OF THE ORIGINAL MODEL

e p,l;,7; and h = unlexicalised nonterminals corresp. to P, L;, R; and H
e top-level generation probabilities”

— Probability of generating p as root:
P(p| + TOP+),e.q.P(S| + TOP+)" (1)
— Probability of generating a head node h with a parent p:
P(h|p),e.g.P(VP|S) (2)
— Probability of generating a left-modifier /;:
Pr(lilli—1, p, h,wp,), e.g.PL(NP|ADV P, S,V P, caught)* (3)
— Probability of generating a right-modifier r;:

Pr(rilri_1,p, h,wy), e.g.PrR(NP| + BEGIN+,V P,V BD, caught)? (4)

“omitting the smoothing details of BBN’s model

b4+ TOP+ = the hidden root of all parse trees

‘when generating the NP for NP(boy-NN)

dwhen generating the NP for NP(ball-NN); + BEGIN+ = hidden nonterminal

for determining the initial probability
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PROBABILITY STRUCTURE OF THE ORIGINAL MODEL (cont’d)

e probabilities for generating lexical elements

1. for the POS tag of the head of the entire sentence t,:
P(tnlp)

2. for the POS tags of modifier constituents ¢;, and t,,:

P(t,

liyth, wy) and P(t,,

i, tha 'th)
3. for the head word of the entire sentence wy,:

P(wp|th, p)
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PROBABILITY STRUCTURE OF THE ORIGINAL MODEL (cont’d)

e probabilities for generating lexical elements

4. for head words of modifier constituents w;, and wy.,:

P(wli

tlia lia th, wh) and P(sz‘ tTi s Tiy thy wh) (8)

5. for the word feature of the head of the entire sentence f:
P(fh|wh7th7p) (9)

6. for the word features of the head words of modifier constituents f;,
and f,:

P(fi,|known(wy,),ty,, li, th, wy) and P(fy,|known(wy,),tr,, ri,th, wp)®
(10)

e probability of the entire parse tree:

P(parse_tree) = H /) (11)
el

, where I = the set of all elements of the parse_tree

e training data = maximume-likelihood estimates of the params

“known(x) = true iff observed(x) > 4 in the training data
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UPDATED PROBABILITY STRUCTURES OF THE MODEL

e the probabilities for generating

1. the synset of the head of the entire sentence sj,:
P(spltn,p) (12)
2. the head word of the entire sentence w;, becomes®:

P(wplth, p) (13)

3. synsets of modifier constituents s,,,":

p(smi
)\OP(Smi

+ M1 P (S, [ty M, 51)
—i—)\Q]S(Smi T, M, @1(Sh))
+...

A4 1P (S, [tims, mi, @ (sp,))
—|—)\n+2p(5mi by ;)
+>\n+3p(3mi tm,)

tms> Mi, Wh, Sp) = (14)

tmi? mg, W, Sh)

where @'(sy,) is the i*" hypernym of s

“7)++
bcomplete with smoothing components
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UPDATED PROBABILITY STRUCTURES OF THE MODEL (cont’d)

e WordNet hypernym rels form DAG = uniformly-weighted mean over the

; X ‘ probabilities conditioning on each of the hypernyms:
p(smi by M, @j(sh)) = (15)
Page 20 of 48 1 . » ]
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when @7 (s;) = {@](sp),..., @ (sp)}
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UPDATED PROBABILITY STRUCTURES OF THE MODEL (cont’d)

® observations

— train with [yp strike the target]; test with [yp
attack the target] = OK (attack = hyper-
nym(strike))

— only 2-4 back-off levels ~~ negligible difference in pars-
ing performance
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A NEW APPROACH, A NEW DATASET

e Penn Treebank 2 word-sense annotated corpus

e meet SemCor

+

455k word portion of the Brown Corpus

+ every noun, verb, adjective, adverb + WordNet synset

— Brown Corpus Treebank I style annotation

+ part of Brown Corpus Treebank II style annotation

e {Treebank IT annotated Brown} N {SemCor} ~ 220k words

Step 1 synchronising the 220k words

e hyphenates + word senses

1.
2

word sense of the head (e.g. twelve-foot ~» foot_1)

if no clear head then word sense of the hypernym (e.g. U.S.-Soviet
~ country_2)

if 1. & 2. fail, then split hyphenate in the Treebank II file

4. if hyphenate € {"non-XYZ","anti-XYZ"}, then annotate with the

word sense of XYZ
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A NEW APPROACH, A NEW DATASET (cont’d)

Step 2 SemCor U Treebank II Brown issues
— keep only the first synset

— collocations”: WordNet+, Treebank- = reanalyze col-
locations as a seq. of separate words with the same

synset

“patterns of words appearing together (e.g. “apple pie

collocates with "pie” and "tree”)

” "
b

apple tree” — "apple”
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TRAINING AND DECODING

the hypernym chain of the parent head used for the computation of
back-off levels

plug-'n’-play lexical model system
top-down model, bottom-up parsing
rank candidate parse trees

(unextended parsing model) every possible tag ¢ for a word w ~
< w,t, f > (f is computed deterministically) = 1st degree of ambigu-
ity in decoding

(WordNet extended model) every possible synset s for a word-tag pair
~ < w, t, f, s >

forms of pruning during decoding

— parse tree ranking score > factor of e=* of the top ranked parse

— keep the n top-ranked subtrees
"out-of-the-box” BBN (k = —5 and n = 25)
Bikel’s model (k= —9 and n = 50)
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EXPERIMENTS AND RESULTS

e PARSING (1% of the 220K word corpus)

Test 1 the last 117 sentences (section "r”)
— Disappointing results « “our initial test corpus was literally a joke™

Test 2 sample every 100 sentences = 117 sentences

Model, <40 words
testset. | LR | LP | CB | 0CB [ <2CB
Norm, ™ | 69.7 | 72.6 | 2.93 | 31.9 55.0
WhN-ext, %" | 69.7 | T2.7 | 2.86 | 30.8 | 56.0
Norm, bal | 83.1 | 85.0 | 0.82 | 75.9 | 8.7
WhN-ext, bal | 82,9 | 84.0 | 1.02 | T0.5 | 81.3
All sentences
LR | LP | CB | 0CB | <2CB
Norm, ™ | 68.6 | 71.2 | 3.83 | 25.9 44.8
WhN-ext, %" | 69.7 | TL5 | 3.77 | 25.0 | 45.7
Norm, bal | 82.0 | 844 | 1.00 | 73.5 | 838
WhN-ext, bal | 80.5 | 82.2 | 1.43 | 68.4 | T8.6

“humor writing section
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EXPERIMENTS AND RESULTS (cont’d)

| Tiepue | « PARSING OBSERVATIONS

# — roughly similar results

— WN-ext ~~ intermediate ambiguity during decoding
« 5 ‘ — trilexical /tertalexical dependencies ~~ synset advantages
— [bought company [for million]] — no dependency
p - — soft clustering the synsets ~- offset the sparse data problem

— head rules are tuned for syntax, not semantics:
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D SENSE DISAMBIGUATION
— e WORD SENS S GU O
— results®:

Qﬁ | Recall | Precision |

Noun | 86.5% 70.9%

| Page23orss | Verb | 84.0% | 59.5%
Ad | 80.2% | 70.4%

Go Back Adv 78.5% 75.8%
| Total | 84.0% | 67.3% |
Full Screen
Close
Quit

%mn the balanced test set
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EXPERIMENTS AND RESULTS (cont’d)

e WSD OBSERVATIONS

Others distinguish homonyms
Bikel WordNet = fine-grained distinctions
Others disambiguate a small set of homonyms
Bikel attacks generalised WSD

— SemCor’s inter-annotator agreement is 78.6% overall and 70% for
words with polysemy > 8 = precision upper bound

Bikel considers exact synset matches only
Others paradoxically Stetina reported 79.4% overal accuracy (1998)
Others Stetina ranks with heuristics

Bikel ranks with maximum-likelihood probability estimates

Bikel 50-odd Treebank vs. 4 WordNet POS = (output == synset, for a
WordNet POS diff. from the gold file) = recall error
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FUTURE WORK

e toward a state-of-the-art model (Collins’ Model 2/3 based)

e experiment with radical model where nonterminals only

have synsets as their heads and words are generated at the
leaves

e add word-distance context to help WSD

e investigate unsupervised methods for WSD (e.g. Stetina’s
heuristics)
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Bikel’s ”Multilingual Statistical Parsing Engine”

e limitations of previous parsers

— fairly fixed probabilistic structure = re-coding
— hard-coded English language features
— hard-coded Penn Treebank features

— designed for uniprocessor environment
e characteristics of Bikel’s parser

— head-driven, chart parsing engine
— language /treebank portable
— "plug-"n’-play” lexical probability structures

— multiprocessor /multi-host support;  multi-threaded
sentence server = parallelism at the sentence level
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LANGUAGE INDEPENDENCE

e Testing

— BBN’s SIFT derived parser
— Chiang’s Stochastic TAG parser

e on English and Chinese

— =~ 100k words of WSJ text from the English Penn Tree-
bank

— &~ 100k words of Xinhua text from the Chinese Tree-
bank

e resulted in

— Chiang’s Stochastic TAG = 77%/78% LP /LR on Xin-
hua compared to 79%/80% on WSJ

“consisting of 4185 sentences



PARSER DESIGN
e emulates BBN’s SIFT & Model 2,3 of Collins
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LANGUAGE PACKAGE

e java package
e required classes

— Treebank — data and methods specific to a particular treebank
— Training — —# — to preprocessing training trees

— HeadFinder — I: text file with head rules specific to a language
treebank; O: head-finding method

— WordFeatures — mapping of lexical items from a language to an
orthographic/morphological word feature vectors

e unicode 1/0 files
e does not include WordNet

e GOAL: creation of a new language package in 1-2 weeks
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PROBABILITY STRUCTURE OBJECTS

e output element + [ProbabilityStructure object = data
objects representing the future and history of all possible

back-off levels]

e TrainerEvent object = history and future for a specified
back-off level
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PROBABILITY-LEVEL PARALLELISM

basic idea: (FILE, EXEC,HOST) = (f1,e1,h1),---, (fn,€n, hn), Wwhere
FILE = iU foU...U fny, EXEC =€ =e3 = ... =¢, and HOST ~
hiU...Uh,

distributed computing parsing engine
Sentence Server
Separate parsers (clients) on each host

Probability Server = DecoderServer object + multi-proc + large RAM
= smoothed top-level probability estimates to multiple small-chart pars-
ing clients

architecture features

— load-balancing
— fault-tolerant parsing engine w.r.t.

* DecoderServer
* Switchboad

— Java RMI based architecture
— copes with Solaris, Linux, Windows and MacOS X
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BUILT FOR SPEED

® parser optimizations

— log-probability estimates and log-lambdas precomput-

ing
— hash maps

— (new chart item == 0 probability)?
circuit decoding ops

— object pool

— smaller optimizations based on profiling

short-
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REPLICATING COLLINS’ MODEL 2

= 4 words
Parser LR LP
Collins || 89.75 9. 19
Bikel #0830 o). 14

< 100 words
LR LP

ga.47 8930

8872 8903

Tests carried out on Section 00 of the Penn Treebank
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DEVELOPING A LANGUAGE PACKAGE FOR CHINESE

e implementation time: OI1€ and a half days!

e state of the art results:

77.0/81.6% LR/LP

On sentences <40 words =
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TREEBANK - SAMPLE TAGGED TEXT"

Battle-tested/NNP*/JJ industrial/JJ managers/NNS
here/RB always/RB buck/VB*/VBP up/IN*/RP ner-
vous/JJ newcomers/NNS with/IN the/DT tale/NN
of/IN the/DT first/JJ of/IN their/PP$ country-
men/NNS*/FW warriors/NNS blown/VBN ashore/RB
375/CD years/NNS ago/RB ./. "/" From/IN the/DT
beginning/NN ,/, it/PRP took/VBD a/DT man/NN
with/IN extraordinary/JJ qualities/NNS to/TO
succeed/VB in/IN Mexico/NNP ,/, "/" says/VBZ
Kimihide/NNP Takimura/NNP ,/, president/NN of/IN
Mitsui/NNS*/NNP group/NN ’s/POS Kensetsu/NNP En-
gineering/NNP Inc./NNP unit/NN ./.°

%after correction
b9k

marks multiple POS tags
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® WordFeatures = orthographic and morphological features
of words. It encodes:
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1. capitalization
\ > 2. hyphenation
3. inflection
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4. derivation
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