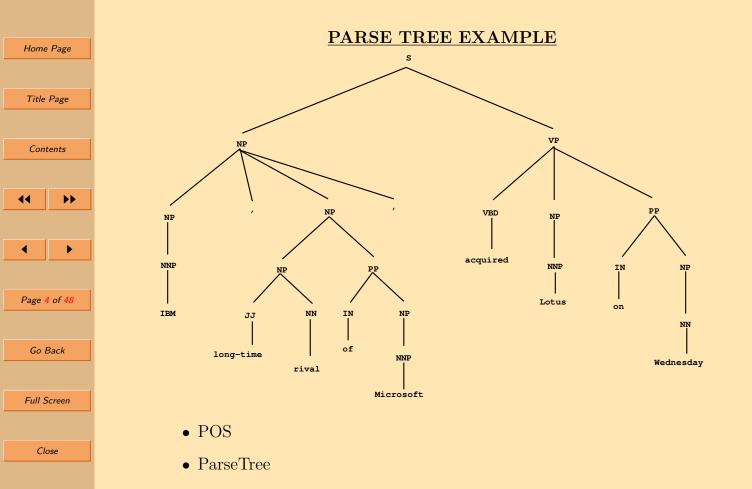


State of the art NLParsing

Razvan Popescu {popescu@di.unipi.it} Computer Sciences Department, University of P*i*sa

25th May 2004

Home Page Title Page **4** • ▶ ◀ Page 2 of 48 Go Back Full Screen Close Quit


CONTENTS

- Introduction to NLParsing (Collins)
- "A statistical Model for Parsing and Word-Sense Disambiguation" (Bikel)
- "Multilingual Statistical Parsing Engine" (Bikel)
- References
- Appendix

Home Page Title Page Contents **4** Page 3 of 48 Go Back Full Screen Close Quit

PARSING

- Fundamental NLP problem
- Sentence $\rightsquigarrow Parser \rightsquigarrow ParseTree$
- State of the art NLParsing systems \equiv ML Probabilistic Parsing Techniques
 - Training sets \equiv {(Sentence1, Tree1); (Sentence2, Tree2); ...; (SentenceN, TreeN)} \Rightarrow Parameter estimates
 - Test sets \equiv model evaluation

• Applications ≡ Information Extraction/Retrieval, Machine Translation, Speech Recognition

Home Page	
Title Page	
Contents	
•• ••	
Page 5 of 48	
Go Back	
Full Screen	
Close	
Quit	

NL PARSING PROBLEMS

- Ambiguity
 - POS ambiguity (e.g. saw (verb) vs. saw (noun))
 - PP attachment ambiguity
 - Coordination btw different words in a sentence
- WSJ statistics
 - average sentence length: 23 words
 - sentences over 30 words: 26%
 - sentences over 40 words: 7%

Home Page	
Title Page	
Contents	
•• ••	
• •	
Page 6 of 48	
Go Back	
Full Screen	
Close	

APPROACHING THE NL PARSING PROBLEM

- Standard Approaches (Rule-Based)
 - hand-crafted grammar + lexically specific info
 - selectional restrictions (e.g. eat & $+food^a$ and apple $\ni +food$) \rightsquigarrow disambiguation
 - problems with selectional restrictions
 - * vocabulary and grammar size (e.g. $\geq 24,444$ distinct words in 40,000 sentences of WSJ)
 - * theoretical problems
 - (MUC-6, 1995) none of the five best systems used full-parsing

^{*a*}word feature

Home Page	
Title Page	
Contents	
(1)	
•	
Page 7 of 48	
Go Back	
Full Screen	
Close	

APPROACHING THE NL PARSING PROBLEM (cont'd)

- Machine-Learning Approaches (Statistical Methods)
 - treebank: {(sentence, parse-tree), \dots }
 - PCFG systems \Rightarrow disappointing results
 - Other directions
 - * increased structural sensitivity models
 - $\ast\,$ partially supervised training algs.
 - \ast probabilistic versions of lexicalised grammars
 - * history-based models
 - state of the art $^a\!\!:$ SPATTER parser
 - $\ast\,$ tested on WSJ
 - $\ast\,$ no hand-crafted grammar; treebank trained
 - * 84.5/84.0% LP/LR section 23 of the Penn WSJ treebank (non-lexicalised PCFGs $\approx 72\%$ avg. LP/LR)
 - $\ast\,$ params conditioned on lexical information

 a Magerman, 1995

Home Page	
Title Page	
Contents	
▲▲ ▶	
Page 8 of 48	
Go Back	
5 # 6	
Full Screen	
Chara	
Close	

APPROACHING THE NL PARSING PROBLEM (cont'd)

- Machine-Learning Approaches (Statistical Methods^a)
 - D. Magerman's "Statistical decision tree models for parsing" (1995)
 - M. Collins' "Three generative lexicalised models for statistical parsing" (1997)
 - BBN's "SIFT" system (1998, derived from Model 2 of Collins)
 - M. Collins' "Head-Driven Statistical Models for Natural Language Parsing" (1999)
 - E. Charniak's "Maximum entropy-inspired parser" (2000)
 - D. Chiang's "Stochastic TAG parser" (2000)
 - LCC's parser (2002)
 - D. Bikel's "Multilingual Statistical Parsing Engine" (2002)

- ...

 $^{a}1995 - nowadays$

A STATISTICAL MODEL FOR PARSING AND WORD-SENSE DISAMBIGUATION^a

- first attempt (2000)
- performance metrics: 84.0/67.3% LR/LP vs. 78.6% interannotator agreement (gold standard)

^{*a*}the core of Bikel's parser

Home	Page
Title	Page
Cont	tents
••	••
•	►
Page <mark>1</mark>	0 of 48
Go E	Back
Full S	creen
Clo	ose

MOTIVATION FROM EXAMPLES

- 1. [IBM bought [Lotus for \$200 million]].
- 2. Sony widened its product line [$_{PP}$ with personal computers].
- 3. The bank issued a check for \$100,000.
- 4. Apple is expecting [$_{NP}$ strong results].
- 5. IBM expected [$_{SBAR}$ each employee to wear a shirt and tie].

For 3.-5. syntactic context \rightsquigarrow word meanings

MOTIVATION FROM PREVIOUS WORK (PARSING)

- previous parsers success
 - computing machinery development
 - treebanks (e.g. Penn Treebank)
 - ML techniques for NLP (POS tagging and PP attachment)
 - probabilistically modeled lexicalisation of grammar formalisms
 - all recent successful parsers use "bilexical dependencies"
 - * attach probabilities to parser moves (Magerman 1997, Ratnaparkhi 1997)
 - * lexicalised PCFG variety (Collins 1997, Charniak 1997)
 - * involve "head-modifier relations"
 - * [lexical head] semantics reduces parsing ambiguity!
 - WordNet + hypernym structure \Rightarrow soft-clusters

MOTIVATION FROM PREVIOUS WORK (WSD)

- syntactic context + dependency structures \Rightarrow WSD
- unsupervised WSD + WordNet based similarity heuristic \Rightarrow PP attachment (88.1%)
- head-driven bilexical dependencies + syntactic relations \Rightarrow generalised WSD (Stetina, 1998)

THE MODEL

Home Page

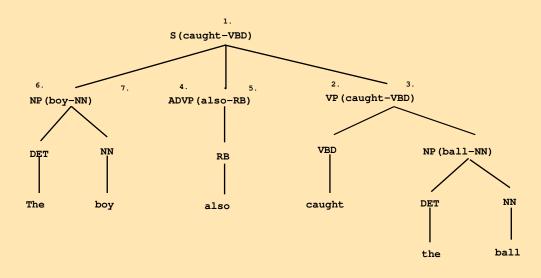
Title Page

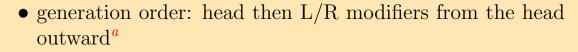
Contents

Page 13 of 48

Go Back

Full Screen


Close


Quit

••

►

▲

- recursive process
- many words are generated high up in the tree $\frac{q}{2}$

 $^{a}(e.g. 1.-7.)$

Home Page	
Title Page	
Contents	
44 >>	
•	
Page 14 of 48	
Go Back	
Full Screen	
Close	
Quit	

THE MODEL (cont'd)

- formally
 - $-P \rightarrow L_n L_{n-1} \dots L_1 H R_1 \dots R_{n-1} R_n$
 - $-P, H, L_i$ and R_i are lexicalised nonterminals of the form X < w, t, f >:
 - * $X \equiv$ traditional CFG nonterminal
 - * < $w, t, f > \equiv$ word POS word-feature (the head of X)
- $H \equiv$ head constituent of P
- $L_i/R_i \equiv \text{left/right modifier constituents of } P \text{ w.r.t. } H$

PROBABILITY STRUCTURE OF THE ORIGINAL MODEL

- p, l_i, r_i and $h \equiv$ unlexicalised nonterminals corresp. to P, L_i, R_i and H
- top-level generation probabilities^a
 - Probability of generating p as root:

$$P(p|+TOP+), e.g.P(S|+TOP+)^{b}$$
(1)

- Probability of generating a head node h with a parent p:

$$P(h|p), e.g. P(VP|S) \tag{2}$$

- Probability of generating a left-modifier l_i :

 $P_L(l_i|l_{i-1}, p, h, w_h), e.g. P_L(NP|ADVP, S, VP, caught)^c$ (3)

- Probability of generating a right-modifier r_i :

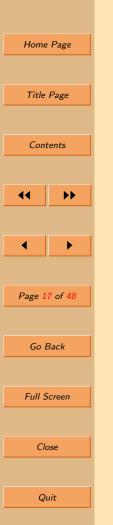
 $P_R(r_i|r_{i-1}, p, h, w_h), e.g. P_R(NP| + BEGIN +, VP, VBD, caught)^d$ (4)

^aomitting the smoothing details of BBN's model ^b+TOP+ \equiv the hidden root of all parse trees ^cwhen generating the NP for NP(boy-NN) ^dwhen generating the NP for NP(ball-NN); +BEGIN+ \equiv hidden nonterminal for determining the initial probability

PROBABILITY STRUCTURE OF THE ORIGINAL MODEL (cont'd)

• probabilities for generating lexical elements

1. for the POS tag of the head of the entire sentence t_h :


$$P(t_h|p) \tag{5}$$

(6)

2. for the POS tags of modifier constituents t_{l_i} and t_{r_i} : $P(t_{l_i}|l_i, t_h, w_h) \text{ and } P(t_{r_i}|r_i, t_h, w_h)$

3. for the head word of the entire sentence w_h :

$$P(w_h|t_h, p) \tag{7}$$

PROBABILITY STRUCTURE OF THE ORIGINAL MODEL (cont'd)

- probabilities for generating lexical elements
 - 4. for head words of modifier constituents w_{l_i} and w_{r_i} :

$$P(w_{l_i}|t_{l_i}, t_i, t_h, w_h) \text{ and } P(w_{r_i}|t_{r_i}, r_i, t_h, w_h)$$
 (8)

5. for the word feature of the head of the entire sentence f_h :

$$P(f_h|w_h, t_h, p) \tag{9}$$

6. for the word features of the head words of modifier constituents f_{l_i} and f_{r_i} :

 $P(f_{l_i}|known(w_{l_i}), t_{l_i}, l_i, t_h, w_h) \text{ and } P(f_{r_i}|known(w_{r_i}), t_{r_i}, r_i, t_h, w_h)^{a}$ (10)

• probability of the entire parse tree:

$$P(parse_tree) = \prod_{i \in I} P_i \tag{11}$$

- , where $I\equiv$ the set of all elements of the *parse_tree*
- training data \Rightarrow maximum-likelihood estimates of the params

 $^{a}known(x) \Rightarrow true \text{ iff } observed(x) \ge 4 \text{ in the training data}$

WORD-SENSE EXTENSIONS TO THE LEXICAL MODEL

- parser output \equiv standard Treebank-style parse tree; (words + POS tags + WordNet synsets)
- Q: synset is to be generated but WHEN?
 - generation of $\langle w, t, f \rangle \equiv$ three steps \Rightarrow four possible computation points
 - soft clustering of synsets \Rightarrow add specificity to ambiguous lexical items + cluster lexical items with similar meanings
 - noun + vb synsets \Rightarrow concept taxonomy + hypernym \Rightarrow partial ordering over WordNet lemmas
- A: after generating the POS tag, before generating the word

UPDATED PROBABILITY STRUCTURES OF THE MODEL

- the probabilities for generating
 - 1. the synset of the head of the entire sentence s_h :

$$P(s_h|t_h, p) \tag{12}$$

2. the head word of the entire sentence w_h becomes^{*a*}:

$$P(w_h|t_h, p) \tag{13}$$

3. synsets of modifier constituents $s_{m_i}^{b}$:

$$\begin{array}{l}
 P(s_{m_i}|t_{m_i}, m_i, w_h, s_h) = & (14) \\
 \lambda_0 \hat{P}(s_{m_i}|t_{m_i}, m_i, w_h, s_h) \\
 +\lambda_1 \hat{P}(s_{m_i}|t_{m_i}, m_i, s_h) \\
 +\lambda_2 \hat{P}(s_{m_i}|t_{m_i}, m_i, @^1(s_h)) \\
 +\dots \\
 +\lambda_{n+1} \hat{P}(s_{m_i}|t_{m_i}, m_i, @^n(s_h)) \\
 +\lambda_{n+2} \hat{P}(s_{m_i}|t_{m_i}, m_i) \\
 +\lambda_{n+3} \hat{P}(s_{m_i}|t_{m_i})
 \end{array}$$

where $@^{i}(s_{h})$ is the i^{th} hypernym of s_{h}

a(7) + + b complete with smoothing components

UPDATED PROBABILITY STRUCTURES OF THE MODEL (cont'd)

• WordNet hypernym rels form DAG ⇒ uniformly-weighted mean over the probabilities conditioning on each of the hypernyms:

$$\hat{P}(s_{m_i}|t_{m_i}, m_i, @^j(s_h)) =$$

$$\frac{1}{n} \sum_{k=1}^n \hat{P}(s_{m_i}|t_{m_i}, m_i, @^j_k(s_h))$$
(15)

when $@^{j}(s_{h}) = \{ @^{j}_{1}(s_{h}), \dots, @^{j}_{n}(s_{h}) \}$

UPDATED PROBABILITY STRUCTURES OF THE MODEL (cont'd)

- the probability for generating
 - head words of modifier constituents $w_{m_i}^{a}$ becomes^b:

$$\hat{P}(w_{m_{i}}|s_{m_{i}}, t_{m_{i}}, m_{i}, w_{h}, s_{h}) = (16)$$

$$\lambda_{0}\hat{P}(w_{m_{i}}|s_{m_{i}}, t_{m_{i}}, m_{i}, w_{h})$$

$$+\lambda_{1}\hat{P}(w_{m_{i}}|s_{m_{i}}, t_{m_{i}}, m_{i}, s_{h})$$

$$+\lambda_{2}\hat{P}(w_{m_{i}}|s_{m_{i}}, t_{m_{i}}, m_{i}, @^{1}(s_{h}))$$

$$+\dots$$

$$+\lambda_{n+1}\hat{P}(w_{m_{i}}|s_{m_{i}}, t_{m_{i}}, m_{i}, @^{n}(s_{h}))$$

$$+\lambda_{n+2}\hat{P}(w_{m_{i}}|s_{m_{i}}, t_{m_{i}}, m_{i})$$

$$+\lambda_{n+3}\hat{P}(w_{m_{i}}|s_{m_{i}}, t_{m_{i}})$$

$$+\lambda_{n+4}\hat{P}(w_{m_{i}}|s_{m_{i}})$$

where $@^{i}(s_{h})$ is the i^{th} hypernym of s_{h}

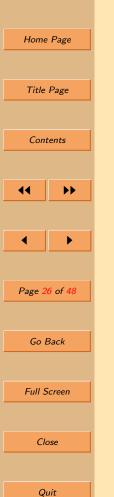
^{*a*} complete with smoothing components ${}^{b}(8)++$

UPDATED PROBABILITY STRUCTURES OF THE MODEL (cont'd)

- observations
 - train with [$_{VP}$ strike the target]; test with [$_{VP}$ attack the target] \Rightarrow OK (attack = hyper-nym(strike))
 - only 2-4 back-off levels \leadsto negligible difference in parsing performance

Home Page		
Title Page		
Contents		
•• ••		
Page 23 of 48		
Go Back		
Full Screen		
Close		
Quit		

A NEW APPROACH, A NEW DATASET


- Penn Treebank $\not\supseteq$ word-sense annotated corpus
- meet **SemCor**
 - + 455k word portion of the Brown Corpus
 - $+\,$ every noun, verb, adjective, adverb + WordNet synset
 - Brown Corpus Treebank I style annotation
 - + part of Brown Corpus Treebank II style annotation
- {Treebank II annotated Brown} \cap {SemCor} \approx 220k words
- **Step 1** synchronising the 220k words
 - hyphenates + word senses
 - 1. word sense of the head (e.g. twelve-foot \rightsquigarrow foot_1)
 - 2. if no clear head then word sense of the hypernym (e.g. U.S.-Soviet \rightsquigarrow country_2)
 - 3. if 1. & 2. fail, then split hyphenate in the Treebank II file
 - 4. if hyphenate $\in \{ "non-XYZ", "anti-XYZ" \}$, then annotate with the word sense of XYZ

Home Page	
Title Page	
Contents	
	A NEW APPROACH, A NEW DATASET (cont'd)
•• ••	Step 2 SemCor \cup Treebank II Brown issues
	Step 2 Semeon C meebank in brown issues
• •	– keep only the first synset
	$-$ collocations ^{<i>a</i>} : WordNet+, Treebank- \Rightarrow reanalyze col-
Page 24 of 48	locations as a seq. of separate words with the same
	synset
Go Back	
	^{<i>a</i>} patterns of words appearing together (e.g. "apple pie", "apple tree" – "apple" collocates with "pie" and "tree")
Full Screen	conocates with pie and tree)
Close	
Quit	

TRAINING AND DECODING

- the hypernym chain of the parent head used for the computation of back-off levels
- plug-'n'-play lexical model system
- top-down model, bottom-up parsing
- rank candidate parse trees
- (unextended parsing model) every possible tag t for a word $w \rightsquigarrow w, t, f > (f \text{ is computed deterministically}) \Rightarrow 1st degree of ambiguity in decoding$
- (WordNet extended model) every possible synset s for a word-tag pair $\rightsquigarrow < w, t, f, s >$
- forms of pruning during decoding
 - parse tree ranking score \geq factor of e^{-k} of the top ranked parse
 - keep the *n* top-ranked subtrees
- "out-of-the-box" BBN (k = -5 and n = 25)
- Bikel's model (k = -9 and n = 50)

EXPERIMENTS AND RESULTS

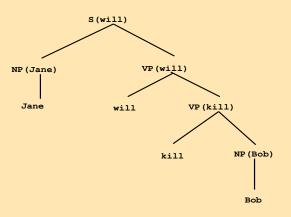
• PARSING (1% of the 220K word corpus)

Test 1 the last 117 sentences (section "r")

- Disappointing results \leftarrow "our initial test corpus was literally a joke"^a

Test 2 sample every 100 sentences \Rightarrow 117 sentences

Model,	≤ 40 words				
test set	LR	LP	CB	0CB	$\leq 2CB$
Norm, "r"*	69.7	72.6	2.93	31.9	55.0
WN-ext, "r"	69.7	72.7	2.86	30.8	56.0
Norm, bal	83.1	85.0	0.82	75.9	85.7
WN-ext, bal	82.9	84.0	1.02	70.5	81.3
	All sentences				
	LR	LP	$\overline{\text{CB}}$	0CB	$\leq 2CB$
Norm, "r"*	68.6	71.2	3.83	25.9	44.8
WN-ext, "r"	69.7	71.5	3.77	25.0	45.7
Norm, bal	82.0	84.4	1.00	73.5	83.8
WN-ext, bal	80.5	82.2	1.43	68.4	78.6


^{*a*}humor writing section

EXPERIMENTS AND RESULTS (cont'd)

• PARSING OBSERVATIONS

- roughly similar results
- WN-ext \rightsquigarrow intermediate ambiguity during decoding
- -trilexical/tertalexical dependencies \rightsquigarrow synset advantages
- [bought company [for million]] no dependency
- soft clustering the synsets \leadsto offset the sparse data problem
- head rules are tuned for syntax, not semantics:

EXPERIMENTS AND RESULTS (cont'd)

• WORD SENSE DISAMBIGUATION

- results^{*a*}:

	Recall	Precision
Noun	86.5%	70.9%
Verb	84.0%	59.5%
Adj	80.2%	70.4%
Adv	78.5%	75.8%
Total	84.0%	67.3%

^a on the balanced test set

Home Page	
Title Page	
Contents	
44 >>	
• •	
Page 29 of 48	
Go Back	
Full Screen	
Close	

EXPERIMENTS AND RESULTS (cont'd)

• WSD OBSERVATIONS

Others distinguish homonyms

Bikel WordNet \Rightarrow fine-grained distinctions

Others disambiguate a small set of homonyms

- **Bikel** attacks generalised WSD
 - SemCor's inter-annotator agreement is 78.6% overall and 70% for words with polysemy $\geq 8 \Rightarrow$ precision upper bound

Bikel considers exact synset matches only

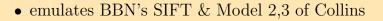
- Others paradoxically Stetina reported 79.4% overal accuracy (1998)
- **Others** Stetina ranks with heuristics
 - Bikel ranks with maximum-likelihood probability estimates
 - **Bikel** 50-odd Treebank vs. 4 WordNet POS \Rightarrow (output == synset, for a WordNet POS diff. from the gold file) \equiv **recall error**

FUTURE WORK

- toward a state-of-the-art model (Collins' Model 2/3 based)
- experiment with radical model where nonterminals only have synsets as their heads and words are generated at the leaves
- add word-distance context to help WSD
- investigate unsupervised methods for WSD (e.g. Stetina's heuristics)

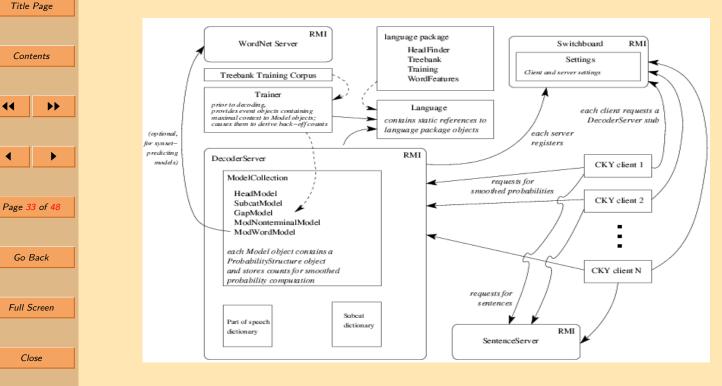
Bikel's "Multilingual Statistical Parsing Engine"

- limitations of previous parsers
 - fairly fixed probabilistic structure \Rightarrow re-coding
 - hard-coded English language features
 - hard-coded Penn Treebank features
 - designed for uniprocessor environment
- characteristics of Bikel's parser
 - head-driven, chart parsing engine
 - language/treebank portable
 - "plug-'n'-play" lexical probability structures
 - multiprocessor/multi-host support; multi-threaded sentence server \Rightarrow parallelism at the sentence level


Home Page		
Title	Page	
Cont	ents	
44	••	
•		
Page <mark>3</mark> 2	2 of 48	
Go E	Back	
Full S	creen	
Clo	ose	

LANGUAGE INDEPENDENCE

- Testing
 - BBN's SIFT derived parser
 - Chiang's Stochastic TAG parser
- on English and Chinese
 - $-\approx 100 \rm k$ words of WSJ text from the English Penn Treebank
 - $-\approx$ 100k words of Xinhua text from the Chinese Treebank^a
- resulted in
 - Chiang's Stochastic TAG $\Rightarrow 77\%/78\%$ LP/LR on Xinhua compared to 79%/80% on WSJ


^a consisting of 4185 sentences

PARSER DESIGN

Home Page

Quit

Arrow \equiv functional relationship Solid arrow \equiv the direction of request from a client to a server Dashed arrow \equiv the flow of information

LANGUAGE PACKAGE

• java package

Home Page

Title Page

Contents

Page 34 of 48

Go Back

Full Screen

Close

Quit

- required classes
 - Treebank data and methods specific to a particular treebank
 - Training -#- to preprocessing training trees
 - HeadFinder I: text file with head rules specific to a language treebank; O: head-finding method
 - WordFeatures mapping of lexical items from a language to an orthographic/morphological word feature vectors
- unicode I/O files
- does not include WordNet
- GOAL: creation of a new language package in 1-2 weeks

Home Page	
Title Page	
Contents	
4	
• •	
Page 35 of 48	
Go Back	
Full Screen	
Close	
Quit	

PROBABILITY STRUCTURE OBJECTS

- output element + [ProbabilityStructure object ≡ data objects representing the future and history of all possible back-off levels]
- TrainerEvent object \equiv history and future for a specified back-off level

PROBABILITY-LEVEL PARALLELISM

- basic idea: $(FILE, EXEC, HOST) \equiv (f_1, e_1, h_1), \dots, (f_n, e_n, h_n)$, where $FILE = f_1 \cup f_2 \cup \dots \cup f_n$, $EXEC = e_1 = e_2 = \dots = e_n$ and $HOST \rightsquigarrow h_1 \cup \dots \cup h_n$
- distributed computing parsing engine
- Sentence Server
- Separate parsers (clients) on each host
- Probability Server ≡ DecoderServer object + multi-proc + large RAM
 ⇒ smoothed top-level probability estimates to multiple small-chart parsing clients
- architecture features
 - load-balancing
 - fault-tolerant parsing engine w.r.t.
 - * DecoderServer
 - * Switchboad
 - Java RMI based architecture
 - copes with Solaris, Linux, Windows and MacOS X

Home Page	
Title Page	
Contents	
44	
• •	
Page 37 of 48	
Go Back	
Full Screen	
Close	
Quit	

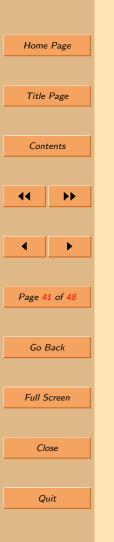
BUILT FOR SPEED

- parser optimizations
 - log-probability estimates and log-lambdas precomputing
 - hash maps
 - (new chart item == 0 probability)? shortcircuit decoding ops
 - object pool
 - smaller optimizations based on profiling

REPLICATING COLLINS' MODEL 2

	≤ 40 words		≤ 100	words
Parser	LR	LP	LR	LP
Collins	89.75	90.19	88.47	89.30
Bikel	89.89	90.14	88.72	89.03

Tests carried out on Section 00 of the Penn Treebank


DEVELOPING A LANGUAGE PACKAGE FOR CHINESE

- implementation time: one and a half days!
- state of the art results: On sentences ≤ 40 words \Rightarrow 77.0/81.6% LR/LP

REFERENCES

Home Page	
Title Page	
Contents	
44 >>	
• •	
Page 40 of 48	
Go Back	
Full Screen	
Full Screen	
Close	
Quit	

- Daniel M. Bikel. Design of a Multi-lingual, Parallel-processing Statistical Parsing Engine, HLT 2002 proceedings
- Daniel M. Bikel. A statistical model for parsing and word-sense disambiguation. In *Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora*, Hong Kong, October 2000.
- Daniel M. Bikel and David Chiang. Two statistical parsing model applied to the Chinese Treebank. In Martha Palmer, Mitch Marcus, Aravind Joshi, and Fei Xia, editors, *Proceedings of the Second Chinese Language Processing Workshop*, pages 1-6, Hong Kong, 2000.
- Eugene Charniak. Statistical Parsing with a Context-free Grammar and Word Statistics. In *Proceedings of the Fourteenth National Conference on Artificial Intelligence*, Menlo Park. AAAI Press/MIT Press. 1997.
- Michael John Collins. *Head-Driven Statistical Models for Natural Language Parsing*. PhD thesis, University of Pennsylvania, 1999, Chapter 1, Pages 1-30.
- Mitchell P. Marcus, Beatrice Santorini, and Marry Ann Marcinkiewicz. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19:313-330, 1993.
- George A. Miller, Richard T. Beckwith, Christiane D. Fellbaum, Derek Gross, and Katherine J. Miller. 1990. WordNet: An on-line lexical database. *International Journal of Lexicography*, 3(4):235-244.

APPENDIX

TREEBANK – SAMPLE TAGGED TEXT^a

Battle-tested/NNP*/JJ industrial/JJ managers/NNS here/RB always/RB buck/VB*/VBP up/IN*/RP nervous/JJ newcomers/NNS with/IN the/DT tale/NN of/IN the/DT first/JJ of/IN their/PP\$ countrymen/NNS*/FW warriors/NNS blown/VBN ashore/RB 375/CD years/NNS ago/RB ./. "/" From/IN the/DT beginning/NN ,/, it/PRP took/VBD a/DT man/NN with/IN extraordinary/JJ qualities/NNS to/TO succeed/VB in/IN Mexico/NNP ,/, "/" says/VBZ Kimihide/NNP Takimura/NNP ,/, president/NN of/IN Mitsui/NNS*/NNP group/NN 's/POS Kensetsu/NNP Engineering/NNP Inc./NNP unit/NN ./.^b

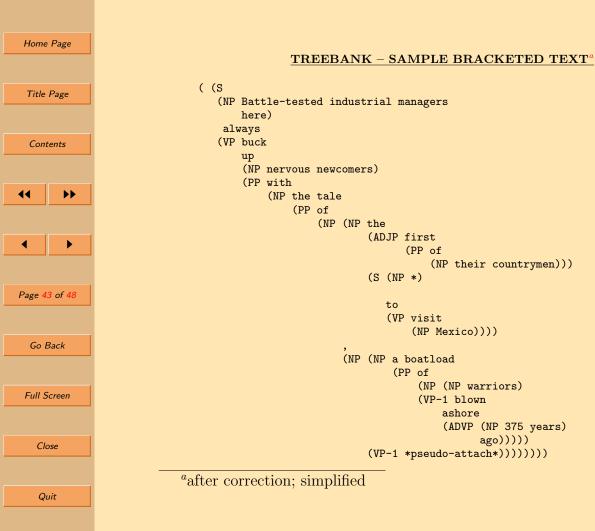
Quit

Home Page

Title Page

Contents

Page 42 of 48

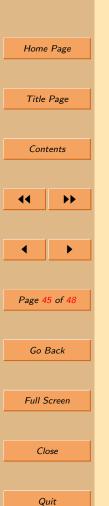

Go Back

Full Screen

Close

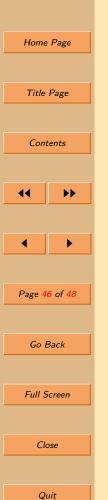
4•

^aafter correction ^b"*" marks multiple POS tags



(ADVP (NP 375 years) ago)))))

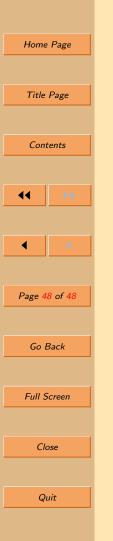
Home Page	
Title Page	
Contents	
•• ••	
• •	
Page 44 of 48	
Go Back	
Full Screen	
Close	
Quit	


WORD FEATURE EXAMPLE

- WordFeatures ≡ orthographic and morphological features of words. It encodes:
 - 1. capitalization
 - 2. hyphenation
 - 3. inflection
 - 4. derivation
 - 5. numeric
- Example: "C3H0I0D3N0" stands for Geography (nonsentence-initial capitalised, no hyphenation, no inflection, "graphy" derivation and non-numeric)

BIKEL'S PARSER – PACKAGES

Packages	
danbikel.lisp	Provides classes to create, read and manipulate symbolic expressions (S–expressions), including interned symbols.
<u>danbikel.parser</u>	Provides the core framework of this extensible statistical parsing engine.
danbikel.parser.arabic	Provides language-specific classes necessary to parse Arabic.
danbikel.parser.chinese	Provides language-specific classes necessary to parse Chinese.
danbikel.parser.constraints	Provides interfaces and classes to allow constrain-parsing.
danbikel.parser.english	Provides language-specific classes necessary to parse English.
danbikel.parser.lang	Provides default abstract base classes for the required interfaces of a language package.
<u>danbikel.parser.ms</u>	Default package for model structure classes (subclasses of <u>ProbabilityStructure</u>).
<u>danbikel.parser.util</u>	Utility classes for displaying and manipulating parse trees.
danbikel.switchboard	Provides classes to implement a distributed client-server environment, with a central switchboard responsible for assigning clients to servers and for doing out objects to clients for processing.
<u>danbikel.util</u>	Provides some basic utility classes.
danbikel.util.proxy	Contains various InvocationHandler objects with static factory methods to provide proxy instances.


BIKEL'S PARSER – LANGUAGE PACKAGE

Class Summary		
<u>AbstractHeadFinder</u>	Provides a default abstract implementation of the <u>HeadPinder</u> interface.	
AbstractHeadFinder.HeadFindInstruction	Data structure for specifying a way to search for a head in a grammar production: a set of symbols to scan for and the direction of that scan.	
<u>AbstractTraining</u>	Provides methods for language-specific preprocessing of training parse trees.	
AbstractTreebank	A collection of mostly-abstract methods to be implemented by a langauge-specific subclass.	
AbstractWordFeatures	Provides a default abstract implementation of the <u>WordPeatures</u> interface.	

IMPLEMENTATION METRICS

- 12 packages
- ≈ 240 classes
- \approx 4800 methods ?!?

THANK YOU!