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Part V: Language Modeling

• Comparing ASR and statistical MT

• N-gram LMs

• Perplexity

• Frequency smoothing

• LM representation

• Efficient handling of huge LMs
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Fundamental Equation of ASR

Let x be a sequence of acoustic observations, the most probable transcription w∗

is searched through the following statistical decision criterion:

w∗ = arg max
w

Pr(x | w) Pr(w) (1)

The computational problems of ASR:

• language modeling: estimating the language model probability Pr(w)
• acoustic modeling: estimating the acoustic model probability Pr(x | w)
• search problem: carrying out the optimization criterion (1)

The acoustic model is defined by introducing an hidden alignment variable s:

Pr(x | w) =
∑

s

Pr(x, s | w)

corresponding to state sequences of a Markov model generating x and s.
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Fundamental Equation of SMT

Let f be any text in a Foreign source language. The most probable translation
into English is searched among texts e in the target language by:

e∗ = arg max
e

Pr(f | e) Pr(e) (2)

The computational problems of SMT:

• language modeling: estimating the language model probability Pr(e)
• translation modeling: estimating the translation model probability Pr(f | e)
• search problem: carrying out the optimization criterion (2)

The translation model is defined in terms of an hidden alignment variable a:

Pr(f | e) =
∑

a

Pr(f ,a | e)

that map source to target positions, and a multinomial process for f and a.
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ASR/MT Architecture
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Parallel data are weakly aligned observations of source and target symbols.
In other words, we do not need to observe the hidden variables s or a.
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N-gram LMs

The purpose of LMs is to compute the probability Pr(wT
1 ) of any sequence of

words wT
1 = w1 . . . , wt, . . . , wT . The probability Pr(wT

1 ) can be expressed as:

Pr(wT
1 ) = P (w1)

T∏

t=2

Pr(wt | ht) (3)

where ht = w1, . . . , wt−1 indicates the history of word wt.

• Pr(wt | ht) become difficult to estimate as the sequence of words ht grows.

• We approximate by defining equivalence classes on histories ht.

• n-gram approximation let each word depend on the most recent n− 1 words:

ht ≈ wt−n+1 . . . wt−1. (4)
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Normalization Requirement

∞∑

T=1

Pr(T )
∑

w1...wT

Pr(w1, . . . , wT | T ) = 1

N -gram LMs guarantee that probabilities sum up over one, for a given length T :

X
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wT
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| {z }
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w2

Pr(w2 | h1) . . .
X

wT−1
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·1 . . . · 1 · 1 = 1 (5)
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String Length Model

Hence we just need a length model P (T ), some examples are:

• Exponential model: p(T ) = (a− 1)a−T with any a > 1
– Bad: favors short strings, which are already rewarded by the n-gram product

• Uniform model: p(T ) = 1/K(|f |) for lengths up to K(|f |) and 0 otherwise
– Good: for a given input f , K is constant and can be disregarded
– Shorter sentences are anyway favoured

• Word Insertion model is also added to reward any added word
– feature function: h(e, f ,a) = exp(|e|)
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How to measure LM quality

LMs for ASR are evaluated with respect to their

• Impact on recognition accuracy = Word Error Rate

• Capability of predicting words in a text = Perplexity

The perplexity measure (PP) is defined as follows:

PP = 2LP where LP = − 1
M

log2 P̂ (wM
1 ) (6)

• wM
1 = w1 . . . wM is a sufficiently long test sample

• P̂r(wM
1 ) is the probability of wM

1 computed with a given a stochastic LM.

According to basic Information Theory, perplexity indicates that the prediction
task of the LM is as difficult as guessing a word among PP equally likely words.

Example: guessing random digits has PP=10.
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N-gram LM and data sparseness

Even estimating n-gram probabilities is not a trivial task:

• high number of parameters: e.g. a 3-gram LM with a vocabulary of 1,000
words requires, in principle, to estimate 109 probabilities!

• data sparseness of real texts: i.e. most of correct n-grams are rare events

Test samples will contain many never observed n-grams: assigning one of them
probability zero will rise PP to infinite!

Experimentally, in the 1.2Mw (million word) Lancaster-Oslo-Bergen corpus:

• more than 20% of bigrams and 60% of trigrams occur only once

• 85% of trigrams occur less than five times.

• expected chances of finding new 2-grams is 22%

• expected change of finding new 3-grams is 65%

We need frequency smoothing or discounting!
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Frequency Discounting

Discount relative frequency to assign some positive prob to every possible n-gram

0 ≤ f∗(w | x y) ≤ f(w | x y) ∀x y w ∈ V 3

The zero-frequency probability λ(x y), defined by:

λ(x y) = 1.0 −
∑

w∈V

f∗(w | x y),

is redistributed over the set of words never observed after history x y.

Redistribution is proportional to the less specific n− 1-gram model p(w | y).1

1Notice: c(x, y) = 0 implies that λ(x y) = 1.
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Smoothing Schemes

Discounting of f(w | x y) and redistribution of λ(x y) can be combined by:

• Back-off, i.e. select the most significant approximation available:

p(w | x y) =
{

f∗(w | x y) if f∗(w | x y) > 0
αx yλ(x y)p(w | y) otherwise

(7)

where αxy is an appropriate normalization term

• Interpolation, i.e. sum up the two approximations:

p(w | x y) = f∗(w | x y) + λ(x y)p(w | y). (8)
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Smoothing Methods

• Witten-Bell estimate [Witten & Bell, 1991]
λ(xy) ∝ n(xy) i.e. # different words observed after xy in the training data:

λ(xy) =def
n(xy)

c(xy) + n(xy)
which gives: f∗(w | xy) =

c(xyw)
c(xy) + n(xy)

• Absolute discounting [Ney & Essen, 1991]
subtract constant β (0 < β ≤ 1) from all observed n-gram counts2

f∗(w | xy) = max

{
c(xyw)− β

c(xy)
, 0

}
which gives λ(xy) = β

∑
w:c(xyw)>1 1

c(xy)

2β ≈ n1
n1+2n2

< 1 where nc is # of different n-grams which occurr c times in the training data.
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Improved Absolute Discounting

• Kneser-Ney smoothing [Kneser & Ney, 1995]
Absolute discounting with corrected counts for lower order n-grams. Rationale:
the lower order count c(y, w) is made proportional to the number of different
words xy follows.

Example: let c(los, angeles) = 1000 and c(angeles) = 1000 −→ corrected
count is c′(angeles) = 1, hence the unigram prob p(angeles) will be small.

• Improved Kneser-Ney [Chen & Goodman, 1998]
In addition use specific discounting coefficients for rare n-grams:

f∗(w | x y) =
c(xy w)− β(c(xyw))

c(xy)

where β(0) = 0, β(1) = D1, β(2) = D2 , β(c) = D3+ if c ≥ 3.
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LM representation: ARPA File Format

Contains all the ingredients needed to compute LM probabilities:
\data\
ngram 1= 86700
ngram 2= 1948935
ngram 3= 2070512
\1-grams:
-2.88382 ! -2.38764
-2.94351 world -0.514311
-6.09691 pisa -0.15553
...
\2-grams:
-3.91009 world ! -0.351469
-3.91257 hello world -0.24
-3.87582 hello pisa -0.0312
..
\3-grams:
-0.00108858 hello world !
-0.000271867 , hi hello !
...
\end\

logPr(!| hello pisa) = -0.0312 + logPr(!| pisa)
logPr(!| pisa) = -0.15553 - 2.88382
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Large Scale Language Models

• Availability of large scale corpora has pushed research toward using huge LMs

• At 2006 NIST WS best systems used LMs trained on at least 1.6G words

• Google presented results using a 5-gram LM trained on 1.3T words

• Handling of such huge LMs with available tools (e.g. SRILM) is prohibitive
if you use standard computer equipment (4 to to 8Gb of RAM)

• Trend of technology is towards distributed processing using PC farms

We developed IRSTLM, a LM library addressing these needs

• open-source LGPL library under sourceforge.net

• integrated into the Moses SMT Toolkit and FBK-irst’s speech decoder
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IRSTLM library (open source)

Important Features

• Distributed training on single machine or SGE queue
– split dictionary into balanced n-gram prefix lists
– collect n-grams for each prefix lists
– estimate single LMs for each prefix list
– quickly merge single LMs into one ARPA file

• Space optimization
– n-gram collection uses dynamic storage to encode counters
– LM estimation just requires reading disk files
– probs and back-off weights are quantized
– LM data structure is loaded on demand

• LM caching
– computations of probs, access to internal lists, LM states, ....
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Data Structure to Collect N-grams

3      
w | fr | succ | ptr | flags

6      3      8      1      

3      

w | fr

1      

1-gr      2-gr      3-gr      

• Dynamic prefix-tree data structure

• Successor lists are allocated on demand through memory pools

• Storage of counts from 1 to 6 bytes, according to max value

• Permits to manage few huge counts, such as in the google n-grams
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Distributed Training on English Gigaword
list dictionary number of 5-grams:

index size observed distinct non-singletons

0 4 217M 44.9M 16.2M
1 11 164M 65.4M 20.7M
2 8 208M 85.1M 27.0M
3 44 191M 83.0M 26.0M
4 64 143M 56.6M 17.8M
5 137 142M 62.3M 19.1M
6 190 142M 64.0M 19.5M
7 548 142M 66.0M 20.1M
8 783 142M 63.3M 19.2M
9 1.3K 141M 67.4M 20.2M
10 2.5K 141M 69.7M 20.5M
11 6.1K 141M 71.8M 20.8M
12 25.4K 141M 74.5M 20.9M
13 4.51M 141M 77.4M 20.6M

total 4.55M 2.2G 951M 289M
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Data Structure to Compute LM Probs

1-gr 2-gr 3-gr

3      

w   | bo | pr | idx

1      1      4      

w  | pr

3      1      

• First used in CMU-Cambridge LM Toolkit (Clarkson and Rosenfeld, 1997]

• Slower access but less memory than structure used by SRILM Toolkit

• IRSTLM in addition compresses probabilities and back-off weights into 1 byte!
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Compression Through Quantization

How does quantization work?

1. Partition observed probabilities into regions (clusters)

2. Assign a code and probability value to each region (codebook)

3. Encode the probabilities of all observations (quantization)

We investigate two quantization methods:

• Lloyd’s K-Means Algorithm
– first applied to LM for ASR by [Whittaker & Raj, 2000]
– computes clusters minimizing average distance between data and centroids

• Binning Algorithm
– first applied to term-frequencies for IR by [Franz & McCarley, 2002]
– computes clusters that partition data into uniformly populated intervals

Notice: a codebook of n centers means a quantization level of log2 n bits.
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LM Quantization

• Codebooks
– One codebook for each word and back-off probability level
– For instance, a 5-gram LM needs in total 9 codebooks.
– Use codebook of at least 256 entries for 1-gram distributions.

• Motivation
– Distributions of these probabilities can be quite different.
– 1-gram distributions contain relatively few probabilities
– Memory cost of a few codebooks is irrelevant.

• Composition of codebooks
– LM probs are computed by multiplying entries of different codebooks
– actual resolution of lower order n-grams is higher than that of its codebook!

Very little loss in performance with 8 bit quantization[Federico & Bertoldi ’06]
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LM Accesses by Search Algorithm

SMT Decode calls to a 3-gram LM while decoding from German to English the
text:
ich bin kein christdemokrat und glaube daher nicht an wunder . doch ich möchte

dem europäischen parlament , so wie es gegenwürtig beschaffen ist , für seinen

grossen beitrag zu diesen arbeiten danken.
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LM Accesses by SMT Search Algorithm

• 1.7M calls only involving 120K different 3-grams

• Decoder tends to access LM n-grams in nonuniform, highly localized patterns

• First call of an n-gram is easily followed by other calls of the same n-gram.
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Memory Mapping of LM on Disk

Memory

1-gr 2-gr 3-gr

Disk file

• Our LM structure permits to exploit so-called memory mapped file access.

• Memory mapping permits to include a file in the address space of a process,
whose access is managed as virtual memory

• Only memory pages (grey blocks) that are accessed by decoding are loaded
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