

## **Statistical Machine Translation**

Marcello Federico FBK-irst Trento, Italy Galileo Galilei PhD School – University of Pisa

Pisa, 7-19 May 2008

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

1



### Part IV: MT Evaluation

- Human vs. machine evaluation
- Human evaluation metrics
- Automatic metrics
- Issues with automatic metrics
- Evaluation Campaigns
- Correlation Human and Automatic Scores
- Outlook



### **Evaluating MT Performance**

How do we evaluate the output of a MT system?

#### • Human MT evaluation:

- criteria: adequacy and fluency
- pros: very accurate, high quality
- cons: expensive and slow
- Automatic MT evaluation:
  - criteria: "similarity" to professional human translation
  - pros: inexpensive and quick
  - cons: quality is "slightly" lower than human check

**Evaluation bottleneck**: MT developers need to monitor the effect of <u>daily</u> changes to their systems in order to weed out bad ideas from good ideas!

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

3



### Human Evaluation of MT

Let us introduce the Human Assessment Procedure used at LDC in the 2001 Chinese-English track MT evaluation under the DARPA TIDES program.

- A team of English native judges provide multiple assessments of adequacy and fluency of sampled segments of translations of news stories.
- Adequacy assessment: judges compare each segment to a gold standard selected by a bilingual linguist among several human translations.
- Fluency assessment: wrt grammar of Standard Written English and requires no comparison.
- Judges evaluate fluency and adequacy of each translations at once.
- Judges are timed & encouraged to work quickly (< 30"/sentence) and comfortably.
- Assessors are strongly encouraged to provide their intuitive reaction.



### LDC Human Evaluation of MT: Fluency

A fluent sentence is one that is well-formed grammatically, contains correct spellings, adheres to common use of terms, titles and names, is intuitively acceptable and can be sensibly interpreted by a native speaker of English.

Possible scores:

- 1. Incomprehensible
- 2. Disfluent English
- 3. Non-native English
- 4. Good English
- 5. Flawless English

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

5



The judge is presented with the gold-standard translation and should evaluate how much of the meaning expressed in the gold-standard translation is also expressed in the output translation.

Possible scores:

- 1. None
- 2. Little
- 3. Much
- 4. Most
- 5. All



### **Requirements for Automatic Metrics**

- Low Cost (wrt Human Evaluation)
- Objective (unbiased)
- Informative (for System Developers)
- Efficient

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

7



## **Automatic Evaluation of MT**

Automatic scoring methods typically compare the output against multiple highquality human translations, called references:

- Word alignment methods
  - WER: ratio of smallest edit distance and output length
  - SER: 0 if WER is 0, and 1 otherwise
- N-gram matching methods
  - BLEU: compute weighted sum of counts of the matching *n*-grams
  - NIST: modification of BLEU
- Task completion methods
  - CLIR: compare IR performance with automatic and manual translations
  - IE: check information extraction performance
  - others



- Output: it is a guide to action which ensures that the military always obeys the commands of the party
- Reference 1: it is a guide to action that ensures that the military will forever heed party commands
- Reference 2: it is the guiding principle which guarantees the military forces always being under the command of the party
- Reference 3: it is the practical guide for the army always to heed the directions of the party

We can see that the lowest edit distance is with Reference 1.

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

9



## Automatic Evaluation of MT: WER

Best alignment between Output and Reference 1:

| T:  | it         | is | a                | guide       | to   | action  | *which | en  | sures             | that | the   | military |
|-----|------------|----|------------------|-------------|------|---------|--------|-----|-------------------|------|-------|----------|
| R1: | it         | is | а                | guide       | to   | action  | *that  | ens | sures             | that | the   | military |
| T:  | T: *always |    | *0               | beys *the - |      | -       | commar | nds | * <mark>of</mark> | *the | *part | ;y       |
| R1: | *will      |    | * <mark>f</mark> | orever      | *hee | d party | commar | nds | -                 | -    | -     |          |

The edit distance sums up to: 4 substitutions + 1 deletion + 3 insertions = 8 Hence, the Word Error Rate is  $WER = \frac{8}{18} = 0.44$ 

- WER cannot take into account word re-orderings, e.g. look at the different positions of word party.
- WER compares the output with only one reference.



- Rational: the closer MT is to human translation, the better.
- Idea: check matches of words and phrases between
  - one hypothesis (the translation produced by MT) and
  - a set of references (professional human translations)
- Criterion: the more the matches, the better the hypothesis
- Proposed by IBM [Papineni et al., 2001] (name from IBM's company color)
- A numerical measure of closeness between texts
- Needs good quality references to cover linguistic variety
- Not perfect: small changes in the text may determine big changes in the meaning

Important: only the target language is taken into account!

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

11



### **BLEU score: Two Components**

- Modified N-gram Precision: percentage of N-grams in the MT output that occur in references (cooccurrence)

   matches of shorter N-grams (N=1,2) capture adequacy
   matches of longer N-grams (N=3,4,...) capture fluency
- Sentence Brevity Penalty (rewards Recall): penalizes short MT outputs
- BLEU score is the product of:
  - the geometric mean of the single n-gram precisions
  - the brevity penalty

Pisa, 7-19 May 2008



### **BLEU: Modified N-gram Precision**

$$PRECISION_{BLEU} = exp\left\{\sum_{n=1}^{N} \frac{1}{N} log(p_n)\right\}$$
(1)

where

$$p_n = \frac{\sum_{hypo\in TestSet} \sum_{Ngram \in hypo} Count_{matched}(Ngram)}{\sum_{hypo\in TestSet} \sum_{Ngram \in hypo} Count(Ngram)}$$

N = 4

Matches at each sentence, score on the entire test set.

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

13

**ENDRAZIONE** BLEU Modified N-gram Precision: an Example

Hypo: it is a guide to action which ensures that the military always obeys the commands of the party

Ref1: it is a guide to action that ensures that the military will forever heed party commands

Ref2: it is the guiding principle which guarantees the military forces always being under the command of the party

Ref3: it is the practical guide for the army always to heed the directions of the party



#### BLEU 1-grams precision: 17/18

Hypo: it is a guide to action which ensures that the military always obeys the commands of the party

Ref1: it is a guide to action that ensures that the military will forever heed party commands

Ref2: it is the guiding principle which guarantees the military forces always being under the command of the party

Ref3: it is the practical guide for the army always to heed the directions of the party

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

15



BLEU 2-grams precision: 10/17

Hypo: it is a guide to action which ensures that the military always obeys the commands of the party

Ref1: it is a guide to action that ensures that the military will forever heed party commands

Ref2: it is the guiding principle which guarantees the military forces always being under the command of the party

Ref3: it is the practical guide for the army always to heed the directions of the party



#### BLEU 3-grams precision: 07/16

Hypo: it is a guide to action which ensures that the military always obeys the commands of the party

Ref1: it is a guide to action that ensures that the military will forever heed party commands

Ref2: it is the guiding principle which guarantees the military forces always being under the command of the party

Ref3: it is the practical guide for the army always to heed the directions of the party

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

17



BLEU 4-grams precision: 04/15

Hypo: it is a guide to action which ensures that the military always obeys the commands of the party

Ref1: it is a guide to action that ensures that the military will forever heed party commands

Ref2: it is the guiding principle which guarantees the military forces always being under the command of the party

Ref3: it is the practical guide for the army always to heed the directions of the party



### **BLEU: Brevity Penalty**

$$BP_{BLEU} = \begin{cases} 1 & \text{if } LenHypo > LenRef\\ exp\left(1 - \frac{LenRef}{LenHypo}\right) & \text{if } LenHypo <= LenRef \end{cases}$$
(2)

- Brevity Penalty is calculated over the entire set (not for each sentence)
- LenHypois the total length of hypothesis
- LenRef is the effective reference length, that is total length of references with closest length to each hypothesis translation (depends on hypothesis!)

M. Federico, FBK-irst SMT - Part IV Pisa, 7-19 May 2008

19



## **BLEU Score Computation**

$$BLEU_{score} = BP_{BLEU} * PRECISION_{BLEU}$$
(3)

- BLEU ranges from 0 to 1, while BLEU% from 0 to 100
- The more references, the higher the score
- Pros
  - high correlation with human assigned scores
  - ranking equivalent to human ranking
- Cons
  - no co-occurrence of 4-grams (e.g. 4-grams)  $\Rightarrow$  score is 0.0
  - longer N-grams dominates shorter N-grams



### **BLEU limitations: example**

Ref:a b c d e f g h i j k l m n o p q r sHyp 1:a b c d f e g i h j l k m o n p r q sHyp 2:a b c d e f g x x x x x x x x x x x

|            | Hyp 1  | Hyp 2  |
|------------|--------|--------|
| 1-gram     | 1.0000 | 0.3684 |
| 2-gram     | 0.1666 | 0.3333 |
| 3-gram     | 0.1176 | 0.2941 |
| 4-gram     | 0.0625 | 0.2500 |
| BLEU Score | 0.1871 | 0.3083 |

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

21



#### The NIST score

#### Proposed by NIST (<u>National Institute of Standard and Technology</u>) in 2002

#### Rational

- reduce effect of longer N-grams: use arithmetic mean over N-grams counts instead of geometric mean of co-occurrences over N
- weight more heavily the more informative N-grams
- reduce impact of BP: BLEU is very sensitive to variations in translation length

$$NIST_{score} = BP_{NIST} * PRECISION_{NIST}$$
(4)



#### **NIST score: Precision**

$$PRECISION_{NIST} = \sum_{n=1}^{N} \left\{ \frac{\sum_{all\_w_1...w_n\_that\_co-occur} Info(w_1...w_n)}{\sum_{all\_w_1...w_n\_in\_hypo}(1)} \right\}$$
(5)

where

$$Info(w_1 \dots w_n) = -\log_2\left(\frac{Count(w_1 \dots w_n)}{Count(w_1 \dots w_{n-1})}\right)$$
$$N = 5$$

- *Count* is computed over the full set of references
- Precision range: no theoretical limit, practically [0..20]

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

23



# **NIST** score: Brevity Penalty

$$BP_{NIST} = exp\left\{\beta * log^{2}\left[min\left(\frac{LenHypo}{LenRef}, 1\right)\right]\right\}$$
(6)

- LenHypo =total length of hypothesis
- $LenRef = average \ length \ of \ all \ references \ (does \ not \ dipend \ on \ hypothesis!)$
- $\beta = -4.22$ , chosen so that BP = 0.5 when LenHypo = 2/3 \* LenRef



| Ref:   | abcdefghijklmnopqrs                               |
|--------|---------------------------------------------------|
| Hyp 1: | abcdfegihjlkmonprqs                               |
| Hyp 2: | a b c d e f g x x x x x x x x x x x x x x x x x x |

|            | Hyp 1  | Hyp 2  |
|------------|--------|--------|
| BLEU Score | 0.1871 | 0.3083 |
| NIST Score | 4.2479 | 1.5650 |

M. Federico, FBK-irst

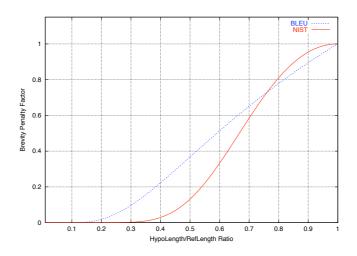
SMT - Part IV

Pisa, 7-19 May 2008

25



**BLEU vs. NIST Brevity Penalty** 



- BLEU penalizes more than NIST hypotheses slightly shorter than references
- NIST penalizes much more than BLEU very short hypotheses

#### **BLEU or NIST?**

- Both scores have shown high correlation with human scores
  - BLEU correlates better with fluency
  - NIST correlates better with adequacy

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008



# **BLEU or NIST? A Case Study**

In CSTAR 2003 Evaluation (Chinese to English) three labs took part:

- CMU (Pittsburgh, USA)
- IRST (Trento, Italy)
- NLPR (Beijing, China)

Results:

|              | BLEU   | NIST   |
|--------------|--------|--------|
| Chi2Eng CMU  | 0.2733 | 5.6830 |
| Chi2Eng IRST | 0.3884 | 8.1383 |
| Chi2Eng NLPR | 0.5542 | 3.4013 |

- BLUE and NIST show the same behaviour for CMU and IRST, but ...
- for NLPR: the highest BLUE and the lowest NIST! Why??



### **Case Study**

Manual inspection outcome:

- NLPR: shorter and more accurate sentences, several empty sentences (== few but precise)
- CMU and IRST: longer and less accurate sentences, no empty sentences (== verbose but imprecise)
- Intrinsecally different approaches used by the NLPR and CMU, IRST
- NLRP: cascade of Example-based MT and Rule-based MT
- CMU, IRST: Statistical MT

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

29



#### **Case Study**

Effect of NLPR's shorter sentences on the scores through the BP

| BLEU |         |        |                |       |           |             |  |  |
|------|---------|--------|----------------|-------|-----------|-------------|--|--|
|      | LenHypo | LenRef | LenHypo/LenRef | BP    | Precision | Final Score |  |  |
| CMU  | 3346    | 3307   | >1             | 1     | 0.2733    | 0.2733      |  |  |
| IRST | 4047    | 3549   | >1             | 1     | 0.3884    | 0.3884      |  |  |
| NLPR | 1967    | 3109   | 0.63           | 0.56  | 0.9896    | 0.5542      |  |  |
| NIST |         |        |                |       |           |             |  |  |
|      | LenHypo | LenRef | LenHypo/LenRef | BP    | Precision | Final Score |  |  |
| CMU  | 3346    | 3421   | 0.98           | 0.999 | 5.6835    | 5.6830      |  |  |
| IRST | 4047    | "      | >1             | 1     | 8.1383    | 8.1383      |  |  |
| NLPR | 1967    | "      | 0.58           | 0.29  | 11.7286   | 3.4013      |  |  |

• BP reduces NLPR BLUE score to almost 1/2!

• BP reduces NLPR NIST score to less than 1/3!

28

Pisa, 7-19 May 2008



### Why Evaluations

- Evaluations started in the ASR community around the 80s - controlled experimental setting (LRs, tools)
  - evaluation infrastructure (external organization)
  - goal is to measure progress and compare methods
  - evaluations followed by a workshop
- Open MT evaluations started in 2002 (NIST MT WS)
  - large LRs for statistical MT
  - introduction of automatic scores and subjective evaluations
- Today: many open evaluations in many sectors of HLT

M. Federico, FBK-irst

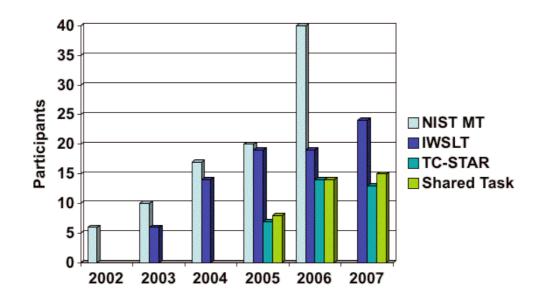
SMT - Part IV

Pisa, 7-19 May 2008

31



## **Evaluation Campaigns on MT**

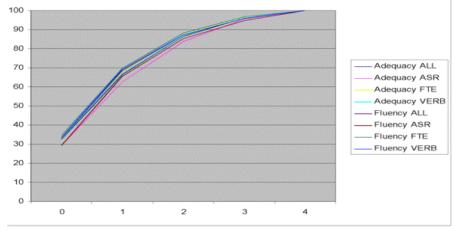




### **Consistency of Graders**

In TC-STAR 2006 Eval, each sentence was evaluated by two graders (tot. 125) Intra-grader Fluency differences:

- 33% sentences with score  $\Delta=0$
- 65% sentences with score  $\Delta \leq 1$  (adequacy slightly worse)



M. Federico, FBK-irst

SMT - Part IV

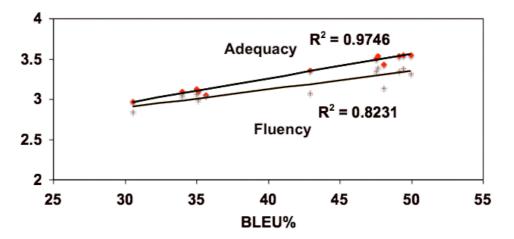
Pisa, 7-19 May 2008

33

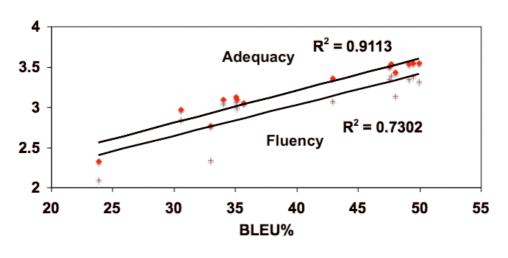


## **Correlation Subjective-Automatic Score**

#### TC-STAR Eng-Spa VBT+ASR (excl. RB-MT)







#### TC-STAR Eng-Spa VBT+ASR (incl. RB-MT)

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

35



### **Experience with Evaluation**

- Automatic scores are:
  - Very useful in development cycle of statistical MT systems
  - Useful when comparing different statistical MT systems
  - Useless to compare systems of different nature
- Subjective scores are:
  - Very useful to assess general level of performance
  - Useful when comparing systems of different nature

- Slightly more informative than automatic scores when comparing statistical systems



### **Outlook: Automatic Scores**

- MT research needs new automatics scores:
  - Informative: to profile system behavior
  - Discriminative: to tell if and where improvements are
  - Effective: to be computed quickly and often
- We need more deep insight into system behavior:
  - More complex and informative benchmarks (used many times)
  - Encourage development of open tools for MT output profiling

M. Federico, FBK-irst

SMT - Part IV

Pisa, 7-19 May 2008

37

36



### **Outlook: Human Evaluation**

#### Subjective evaluation should be more efficient:

- Use trained and expert graders only
- Avoid analyzing long (awful) MT outputs
- Focus on specific parts of the sentence:
  - a portion, clause, or syntactic constituent
- Use large test sets to be able to extract interesting parts only - count and skip bad translations, don't waste time

This may require re-thinking the whole evaluation protocol