

Statistical Machine Translation

Marcello Federico FBK-irst Trento, Italy Galileo Galilei PhD School - University of Pisa

Pisa, 7-19 May 2008

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

Part III: Search Problem

- Complexity issues
- ullet A^* search: with single and multi-stacks
- Dynamic Programming and the TSP problem
- DP beam-search: with single and multi-stacks
- Re-ordering constraints
- Extensions to translation models and search algorithms

M. Federico, FBK-irst - Part III Pisa, 7-19 May 2008

Decoding in SMT

the task of the search procedure is to find the most likely translation: Given a statistical alignment model, a language model, and a source sentence,

$$\mathbf{e}^* = \operatorname*{argmax}_{\mathbf{e}} p(\mathbf{e}) \sum_{\mathbf{a}} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

Often, we use the Viterbi or maximum approximation:

$$\mathbf{e}^* = \operatorname*{argmax}_{\mathbf{e}} p(\mathbf{e}) \max_{\mathbf{a}} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

Complexity of decoding depends on word-reordering:

- no word-reordering: polynomial (Viterbi algorithm)
- only local word-reordering: high-polynomial
- arbitrary word-reordering: NP-hard

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

Decoding Complexity

W

Let us consider decoding with Model 1:

$$\mathbf{e}^* = \operatorname*{argmax}_{l,e_1,e_2,...,e_l} \underbrace{p(e_1 \mid \$) \cdot p(\$ \mid e_l) \cdot \prod_{i=2}^{l} p(e_i \mid e_{i-1})}_{\mathbf{Pr}(\mathbf{e})} \cdot \underbrace{\frac{p(m \mid l)}{(l+1)^m} \cdot \prod_{j=1}^{m} \sum_{i=1}^{l} p(f_j \mid e_i)}_{\sum_{\mathbf{a}} \Pr(\mathbf{f},\mathbf{a} \mid \mathbf{e})}$$

- We assume a fixed range of lengths for the target string, e.g. $l \leq 2m$
- Computing the single alignment and LM probabilities is fast
- iterating over possible target sequences requires $O(k^{2m})$ operations! Even if we assume that any French word might translate into at most \boldsymbol{k} words
- Decoding with Model 1 and higher models can be proven to be NP-hard, hence there is little hope for an efficient algorithm.
- Solutions: reordering approximate algorithms (beam search) + constraints on word-

Computational complexity

A decision problem is depending on the values of some input parameters (instance). a mathematical question with a yes-or-no answer,

whether any non-empty subset of it sums to zero Subset sum problem (SSP): given a finite set of integers, determine

- Complexity classes of decision problems
- NP: solutions in NP can be verified efficiently P: solutions in P can be computed efficiently (=in polynomial time)
- A remarkable subset of NP is the NP-complete (NPC) set
- NPC problems are the hardest problems in NP in the sense that
- an efficient solution of one NPC prob would apply to all NP probs (NP=P)a proof that one NPC prob $otin \mathsf{P}$ would apply to all NP probs $(NP \neq P)$
- SSP is NP-complete: a supposed answer is very easy to verify for correctness, algorithms are impractically slow for large sets of integers but there is no known efficient algorithm to find an answer; that is, all known

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

NP-Complete Problems

G

A decision problem C is NP-complete if:

- L C is in NP
- i.e. a candidate solution to C can be verified in polynomial time
- 2. every problem K in NP is reducible to C
- instances $c \in C$, s.t. the answer to c is YES iff the answer to k is YES i.e. there is an efficient algorithm which transforms instances $k \in K$ into
- For (2) it is sufficient to show that an already known NPC prob reduces to C
- A problem satisfying (2) is said to be NP-hard, whether or not it satisfies (1).
- Note that NP-hard problems do not need to be decision problems
- we could solve all problems in NP in polynomial time A consequence of this definition is that if we had an efficient algorithm for C
- The problem weather P = NP or $P \neq NP$ is still unsolved!
- \$1 million reward offered by a prestigious institution

Decoding with M1 is NP-complete

We express the search problem in terms of a decision problem

M1-DECIDE

that $Pr(\mathbf{e}) \cdot Pr(\mathbf{f} \mid \mathbf{e}) > k$? $p(f \mid e)$, and a real number k, does there exist a string ${f e}$ of length $\leq 2m$ such Given a string f of length m, a set of parameter tables $p(l \mid m)$, $p(e \mid e')$ and

Theorem. M1-DECIDE is NP-complete

Proof

(continued) namely the Hamiltonian Circuit Problem. Next, we show a polynomial-time reduction from another NP-complete problem, Inclusion in NP is easy: for any e computation of $\Pr(e) \cdot \Pr(f \mid e)$ is polynomial.

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

M1-DECIDE is NP-complete: Proof

Hamiltonian Circuit Problem

that visits each vertex exactly once and returns to its starting point? Given a directed graph G with vertices labeled $0,1,\ldots,n$ does G have a path

Reduction

Let $\mathcal{F}=\{1,\ldots,n\}$ and $\mathcal{E}=\{0\}\cup\mathcal{F},\ p(f\mid e)=\delta(f,e),\ p(m\mid l)=\delta(m,l),\ p(e\mid e')=\frac{1}{|n(e')|}$ if vertex e is in the adjacent set n(e'), and 0 otherwise; let $\mathbf{f}=1,2\ldots,n$ and k=0. We use e=0 as the special boundary word \$.

Insight

hard to solve efficiently, so must be our MT problem as well. We have expressed the HCP as a translation problem! As we now that HCP is

M. Federico, FBK-irst

Progress ⊒. Search Algorithms for SMT

Koehn et al.	2003 Och & Ney	2002 Tillman et al.			2001 Germann et al.	Garcia et al., Niessen et al.	1998 Wang et al.	1997 Wang et al.	Wu	1996 Berger et al.
multistack DP beam-search for phrase-based SMT (Pharaoh, Moses)	DP search alignment-template approach	DP -beam search decoder Model 4	sentences)	A^st , greedy, integer programming (short	three decoders for Model 4	I. DP algorithm for Model 2	add re-shuffling for Model 3	multiple stacks $+$ A^st for Model 2	A^st decoder for Model 2	multi-stack A^st decoder for Model 3

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

Stack Decoder

9

partial solutions h into an ordered stack. The stack or A^st ${f decoding}$ ${f algorithm}$ builds a solution incrementally and stores

- Initialize the stack with an empty hypothesis
- 2 1 Pop h, the best hypothesis, from the stack
- If h is a complete sentence, output h and terminate
- stack target word w, and push the resulting hypothesis on the Cover some vacant position, possibly extend h with a
- 5 Return 2.
- MT decoding does not progress synchronously with input (as in ASR)
- The solution is built left-to-right, but input is consumed in any order
- The set of positions covered by h is called coverage set
- A^st search needs an heuristic to estimate the completion cost of each theory

Multi Stack Decoder

- Without a good heuristic hypotheses with different coverage sets are not directly comparable
- ldea: use one stack for each coverage set size, extend one h for each stack
- Build solutions incrementally by applying operations to hypotheses (step 4.): (here we assume a word-based fertility model)

adds a new English word and aligns a single French

word to it.

AddZfert adds two new English words, the first has fertility

zero, the second is aligned to a single French word.

Extend aligns an additional French word to the most recent

English word, increasing its fertility.

AddNull aligns a French word to the English NULL word

just introduce words with high zero-fertility probability, and which increase the We need some tricks to reduce cost of some operation, e.g. score of a theory. AddZfert: ĕ

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

Dynamic Programming Approach

11

Let us introduce the Traveling Salesman Problem

- Formulation: given a set of n cities $\{1, 2, ..., n\}$ and costs for traveling between two cities, find the minimum cost tour visiting all cities exactly once, while starting and ending at city 1.
- Complexity: NP-hard. Naive algorithm has complexity O(n!)
- Algorithms: Held and Karp (1962) DP solution is $O(n^22^n)$ and is based on the recursive quantity

 $Q(\mathcal{C},j) \stackrel{def.}{\equiv}$ at city 1, ending in city j and visiting all cities of the subset \mathcal{C} (\mathcal{C} must also cost of the optimal partial tour starting include j).

embeds all the information which are necessary to search for a longer path. $\mathcal Q$ corresponds to an optimal path covering a specific subset of cities and

Held and Karp DP Algorithm for TSP

12

2:1 input: cities $1,2,\ldots,n$ with distance matrix d(j,j') initialization: for $k=2,\ldots,n$ $Q(\{k\},k)$ d(1,k) ; $k = 2, \dots, n$

₽ ω

for each path length $c=2,\ldots,n$ for each pair (\mathcal{C},j) with $|\mathcal{C}|=c$ $Q(\mathcal{C},j)=\min_{j'\in\mathcal{C}\setminus\{j\}}\left\{d(j,j')+Q(\mathcal{C}\setminus\{j\},j')\right\}$

7.5 shortest tour: $Q^* = \min_{j \in \{2,...,n\}} \{d(1,j) + Q(\{2,...,n\},j)\}$

 ∞

9.

10. 11.

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

Held and Karp DP Algorithm for TSP

13

2 1 input: cities $1,2,\ldots,n$ with distance matrix d(j,j') $k=2,\ldots,n$ $Q(\{k\},k)=$ d(1,k); $B(\{k\},k)=1$

ω 4

for each path length $c=2,\ldots,n$ for each pair (\mathcal{C},j) with $|\mathcal{C}|=c$

6. 5
$$\begin{split} Q(\mathcal{C},j) &= \min_{j' \in \mathcal{C} \setminus \{j\}} \left\{ d(j,j') + Q(\mathcal{C} \setminus \{j\},j') \right\} \\ B(\mathcal{C},j) &= \arg\min_{j' \in \mathcal{C} \setminus \{j\}} \left\{ d(j,j') + Q(\mathcal{C} \setminus \{j\},j') \right\} \\ \text{shortest tour: } Q^* &= \min_{j \in \{2,\dots,n\}} \left\{ d(1,j) + Q(\{2,\dots,n\},j) \right\} \\ \text{backtracking: } B_n^* &= \arg\min_{j \in \{2,\dots,n\}} \left\{ d(1,j) + Q(\{2,\dots,n\},j) \right\} \end{split}$$

7.

 ∞

9 $\bar{\mathcal{C}_n^*} = \{2, \dots, n\}$

10.

 $\begin{aligned} &\text{for } c = n, n-1, \dots, 2 \\ &B_{c-1}^* = B(\mathcal{C}_c^*, B_c^*) \;\; ; \;\; \mathcal{C}_{c-1}^* = \mathcal{C}_c^* \setminus B_c^* \end{aligned}$

Held and Karp DP Algorithm for **TSP**

- Cities: 1, 2, 3, 4, 5
- Each tour corresponds to a (partial) (partial) path
- and At each node we maximize same city. of cities visiting exactly the same recombine and ending in the over paths set

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

DP decoder for SMT

15

A DP algorithm for a fertility word-based SMT model can be derived from the TSP algorithm: cities correspond to source positions.

The recursive quantity must be enriched with other state information:

 $Q(\mathcal{C}, j, i, e', e) \stackrel{def.}{\equiv}$ translated covering cost of the optimal partial translation, lenght i, and last target words e^\prime and epositions source position with j, target last

Each information is necessary to extend the translation:

- j is needed to compute the distortion probability
- are needed to compute the trigram LM
- ${\mathcal C}$ is needed to control the coverage of all positions
- is needed to permit translations of different lenghts

DP beam-search algorithm

16

- 1. i = 0
- Ŋ Put translation theories covering the null word into $pool\left[0\right]$
- 3. For all theories th in pool[i] do
- 4. For all expansions th' of th do
- رح. if th^\prime is complete and improves current solution then replace solution
- 6 if th^\prime is partial and improves best theory of its state then
- 7. put th' in pool[i+1]
- update backpointer

 ∞

- 9. prune less promising theories in pool[i+1]
- 10. i = i + 1
- 11. Backtrack solution

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

DP beam-search algorithm

17

Multi-stack DP (Moses)

Basic steps of search

- 1. pick hyp. from one stack
- 2. cover new source positions
- 3. generate translation options
- score hypotheses
- 5. recombine hypotheses
- 6. put them into stacks
- prune stacks

Stack N contains hypotheses covering N positions

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

Solutions for efficiency

19

- Constraints to reduce expanded theories:
- reordering constraints: limit number of allowed permutations
- lexicon pruning: keep just most probable word translations
- Beam search to prune out less promising partial theories
- threshold pruning: keep just theories close to the best theory in the pool
- histogram pruning: keep at most M theories in the pool
- Memory optimization:
- garbage partial theories without successors
- Efficient representation and use of
- Language Model probabilities: pruning, quantization, caching
- Phrase-translation tables: pruning, quantization

Word-reordering: Max Skip Constraints

- Constraint: at each step cover one of the first k empty positions
- Example with k=4:
- indicate so far covered positions
- □ indicate permitted positions for coverage

- Complexity of the TSP can be shown to decrease from $\mathcal{O}(n^22^n)$ to $\mathcal{O}(n^k)$
- Permutations: $k^{n-k}k!$

M. Federico, FBK-irst

SMT - Part III

Pisa, 7-19 May 2008

Extensions of Search Algorithms and Models

21

- Search algorithms can work with different translation models
- just replace the scoring function of partial hypotheses
- a generalization of the TMxLM model is the so-called log-linear model scores are computed with a combination of features functions
- a generalization of word-based translation is phrase-based translation each step, source positions are translated with target phrases (n-grams)
- There are alternative implementations of DP beam-search
- multi-stack decoder, suited to manage word re-ordering
- finite state transducer, adaptable to manage word re-ordering
- Search algorithms can be extended to compute
- word-graphs of translations: dump active hypotheses in search space
- N best translations: search N-best paths in the word-graph
- Word-graphs and N-best lists can be:
- re-scored with models that are difficult to integrate in the search algorithm
- exploited to compute confidence scores of translations