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7 ¡ª Operating System Overview 
The 32-bit edition of Visual C++ can be used to develop programs for three Win32 platforms: Windows NT (on multiple processors), Windows 95, and Win32s. 

Windows NT is Microsoft's high-end portable server operating system. It is a full-featured 32-bit multithreaded operating system with an integrated graphical environment and advanced server capabilities. Its development has been aimed to maximize portability, stability, and security. While its compatibility with well-behaved MS-DOS and Windows 3.1 applications is remarkably good, it falls short of being a 100 percent replacement for your old MS-DOS system; if you wish to run a sophisticated game program, you may have to reboot to the good old DOS command line. (Does DOOM work under Windows NT? Don't ask me; I haven't tried.) 

Windows 3.1 is, of course, the omnipresent graphical environment sitting, used or unused, in a directory on just about every PC nowadays. While it delivers some operating system-like features, it is essentially a graphical environment sitting on top of MS-DOS instead of replacing it. Because of limitations in both DOS and the 16-bit Windows 3.1 architecture, the DOS-Windows system combination is inherently unstable, prone to crashes, and exposed to ill-behaved applications. The Win32s subsystem is yet another layer on top of Windows 3.1; it implements a subset of the Win32 system calls that enables many simpler 32-bit applications (or complex ones that were written with Win32s compatibility in mind) to run. 

Microsoft's new operating system, Windows 95, offers the best of both worlds. Unlike Windows NT, Windows 95 has been written with backward compatibility as one of the main design criteria. Despite this and the fact that Windows 95 inherited a significant amount of legacy code from Windows 3.1, it has remarkably few shortcomings. Its stability is comparable to Windows NT, its performance exceeds that of both Windows NT and Windows 3.1, and its hardware resource requirements are minimal, comparable to that of Windows 3.1. 

Despite the obvious differences between these platforms (the most notable is the restrictions placed on applications intended to run in the Win32s environment), they share most essential features. In particular, most simple applications are expected to be compatible with all three of these platforms with little or no modification. For this reason, I usually discuss operating system or compiler features without regard to the target operating system; if significant platform differences exist, however, I mention those. 

Windows and Messages 

Windows is often referred to as a message-passing operating system. At the very heart of the system is the mechanism that translates just about every event (a keypress, a mouse movement, a timer countdown) into a message; typical applications are built around a message loop that retrieves these messages and dispatches them to the appropriate message handler functions. 

Messages, although sent to applications, are not addressed to them; they are, instead, addressed to what are the other fundamental components of the operating system, windows. A window is much more than merely a rectangular area of the computer's screen; it also represents an abstract entity through which the user and the application interact with each other. 

Applications, Threads, and Windows 

What is the relationship between applications and windows? A typical Win32 application consists of one or more threads, which are basically parallel paths of execution. Think of threads as multitasking within a single application; for example, one thread in a word processing application may be processing user input, while another is busy sending a document to the printer. 
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NOTE: Under Win32s, only single-threaded Win32 applications can run. 




A window is always "owned by" a thread; a thread may own one or more windows, or none at all. Finally, windows themselves are in a hierarchical relationship; some are top-level windows, others are subordinated to their parent windows. Figure 7.1 illustrates this hierarchy. 
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Figure 7.1. Processes, threads, and windows.
There are many types of windows in Windows¡ªno pun intended!. The most obvious, of course, is the large rectangular area that we typically associate with an application. Also obvious is that a dialog box is a window in its own right; it can be moved around, sometimes sized, maximized, or minimized just like the main window of an application. What is less obvious is that many elements displayed within main windows or dialogs are also windows themselves. Every button, edit box, scrollbar, listbox, icon, even the screen background itself is treated as a window by the operating system. 

A very revealing exercise, if you have not done this before, is spending some time with the Spy++ application that comes with Visual C++. Use its Find Window command from the Spy menu and drag the finder tool around the screen to find out how even an apparently simple application window can have many window components. Figure 7.2 shows a typical screen under Windows 95 with each of the multitude of windows within it marked by a thick black border. 
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Figure 7.2. The multitude of windows during a typical session. 

Window Classes 

The basic behavior of a window is defined by its window class. The window class carries information about the window's initial appearance; the default icon, cursor, and menu resource associated with the window; and perhaps most importantly, the address of a function called the window procedure. When an application processes messages, it usually does so by calling the Windows function DispatchMessage for each message received; DispatchMessage, in turn, calls the appropriate window procedure by checking the class of the window the message is for. It is the window procedure that actually processes messages sent to that window. 

There are many standard window classes provided by Windows itself. These system global classes implement the functionality of common controls, for example. Any application can use these classes for its windows; for example, any application can implement edit controls by using the Edit window class. 

Applications can also define their own window classes through the RegisterClass function. This enables programmers to implement window behavior that is not part of any of the system-supplied global classes. For example, this is how a typical application implements the functionality of its own main window and registers the main window's icon and menu resource. 

Windows also enables subclassing and superclassing an existing class. Subclassing substitutes the window procedure for a window class with another. Subclassing is accomplished by changing the window procedure address through the SetWindowLong (instance subclassing) or SetClassLong (global subclassing) function. The difference? In the first case, only the behavior of a specific window changes; in the second case, the behavior of all windows of the specified class is affected. 



[image: image4.png]


NOTE: Global subclassing behaves differently in Win32 and 16-bit Windows (Win32s). In the Win32 case, it affects only windows under the control of the application doing the subclassing; in 16-bit windows, the effect is global, affecting the windows of every application. 




Superclassing creates a new class based on an existing class, retaining its window procedure. To superclass a window class, an application retrieves class information using the GetClassInfo function, modifies the WNDCLASS structure thus received, and uses the modified structure in a call to RegisterClass. Through GetClassInfo, the application also obtains the address of the original window procedure, which it should retain; messages that the new window procedure does not process should be passed to this function. 

Although the terminology is reminiscent of object-oriented terminology, the concept of a window class should not be confused with C++ concepts (or, in particular, concepts of the MFC library). The concept of window classes predates the use of object-oriented languages in Windows by several years. 

Message Types 

Messages come in many flavors, representing events at many different levels. Again, the Spy++ tool can help you appreciate the complex message set every single window must process. Use the Spy++ tool to select some simple element, such as a dialog box, to snoop on; then watch the seemingly endless cascade of messages streaming by in the Spy++ window as you move the mouse over a button in the dialog and click it. Table 7.1 shows the list of messages that appear as I dismiss the Word for Windows "About" dialog by clicking on its OK button. 

Table 7.1: Messages sent to the Word for Windows "About" dialog when the user clicks the OK button. 


	Symbolic Identifier

	Description


	WM_LBUTTONDOWN
	The left mouse button was pressed.

	WM_PAINT
	The OK button is repainted as it is pressed.

	WM_LBUTTONUP
	The left mouse button was released.

	WM_PAINT
	The OK button is repainted as it is released.

	WM_WINDOWPOSCHANGING
	The position of the window is about to change.

	WM_WINDOWPOSCHANGED
	The position of the window has just changed.

	WM_NCACTIVATE
	The window's title area has been activated.

	WM_ACTIVATE
	The window's client area has been activated.

	WM_WINDOWPOSCHANGING
	The position of the window is about to change.

	WM_KILLFOCUS
	The window is about to lose focus.

	WM_DESTROY
	The window is being destroyed.

	WM_NCDESTROY
	The title area of the window is being destroyed.


As you can see, messages representing every single occurrence, every single action are sent to the window for processing. Fortunately, an application does not have to be aware of the meaning of every single message. Instead of processing all possible messages, an application is free to "pick and choose"; messages that remain unprocessed are passed to the operating system's default message handler function. 

Windows messages consist of several parts. Perhaps it is best to review the MSG structure, shown in Listing 7.1, which is used to represent messages. 

Listing 7.1. The MSG structure.
typedef struct tagMSG {

    HWND   hwnd;

    UINT   message;

    WPARAM wParam;

    LPARAM lParam;

    DWORD  time;

    POINT  pt;

} MSG;

The first element of this structure, hwnd, uniquely identifies the window to which this message has been posted. Every window in Windows has such an identifier. 

The next element identifies the message itself. This element may have hundreds of different values, indicating one of the many hundreds (literally!) of different messages that Windows applications may receive. Messages can be organized into several groups depending on their function. Message identifiers are usually referred to symbolically (such as, WM_PAINT, WM_TIMER) rather than by numeric value; these symbolic values are defined in the standard Windows header files. (You need only include windows.h; it, in turn, contains #include directives for the rest.) 

By far the most populous group of Windows messages is the group of window management messages. The symbolic identifiers for these messages all begin with WM_. This group is so large, it only makes sense to further subdivide it into categories. These categories include DDE (Dynamic Data Exchange) messages, clipboard messages, mouse messages, keyboard messages, nonclient area messages (messages that relate to the title, border, and menu areas of a window, typically those areas that are managed by the operating system, not the application), MDI (Multiple Document Interface) messages, and many other types. These categories are somewhat inexact, not always strictly defined; they simply serve as a tool of convenience for programmers trying to form a mental picture of the large set of window management messages. Nor is the set of WM_ messages fixed; it is constantly growing as new operating system capabilities are added. 

Other message groups are related to specific window types. There are messages defined for edit controls, buttons, listboxes, combo boxes, scrollbars, list and tree views, and so on. These messages, with few exceptions, are typically processed by the window procedure of the control's window class and are rarely of interest to the application programmer. 

Applications can also define their own messages. Unique message identifiers can be obtained through a call to the function RegisterWindowMessage. Using private message types enables parts of an application to communicate with each other; separate applications can also exchange information this way. In fact, in 16-bit Windows, cooperating applications typically exchanged data by sending handles of global memory objects to each other. In Win32, this mechanism does not work because applications no longer share an address space; however, other, more powerful mechanisms (for example, memory mapped files) are available for intertask communication. 

Messages and Multitasking 

In Windows 3.1, the message loop had another important role in the interaction between the application and the operating system: it enabled the application to yield control. As Windows 3.1 is not a preemptive multitasking operating system, it does not wrestle away control of the processor from an uncooperative application. Proper functioning of the system depended on the cooperative behavior of applications; namely, that they called specific message processing functions frequently. This behavior is still required of applications that are intended to run under Windows 3.1 using Win32s. 

Message Queues 

This section starts with the simple and moves to the more complex. First, I describe the workings of the 16-bit Windows messaging and task scheduling architecture. 

In 16-bit Windows, the operating system maintains a single message queue. Messages that are generated by various operating system events--such as a keyboard or mouse interrupt--are deposited into this message queue. When an application makes an attempt to retrieve the next message in the queue through the GetMessage or PeekMessage function, the operating system may perform a context switch and activate another application for which messages are waiting in the queue. The message at the top of the queue is then retrieved and returned to the active application via an MSG structure. 

If an application fails to make a call to GetMessage, PeekMessage, or Yield (which enables an application to relinquish control without checking the message queue), it effectively hangs the system. Messages keep accumulating in the message queue; as the queue is of a fixed size, eventually it overflows. Windows responds to this by generating a nasty beep every time a new message is received that cannot be placed into the queue; the result is a very ill system that is beeping continuously even at the slightest mouse movement. 

In Win32 (that is, both in Windows NT and Windows 95) the message queue mechanism is much more sophisticated. In these preemptive operating systems, the orderly cooperation of competing tasks or threads is no longer guaranteed. Two or more threads can quite possibly attempt to access the message queue at the same time; furthermore, as task switching is no longer dependent on the next available message in the queue, there are no guarantees that a task would retrieve only the messages addressed to it. This is just one of a number of reasons why the single message queue of 16-bit Windows has been separated into individual message queues for each and every thread in the system. 

Processes and Threads 

The subject of threads came up briefly during the discussion of the relationship of processes and threads versus windows. 

In a non-multithreaded operating system, such as most flavors of UNIX, the smallest unit of execution is a task or process. The task-scheduling mechanism of the operating system switches between these tasks; multitasking is accomplished between two or more processes. If an application needs to perform multiple functions simultaneously, it splits itself into several tasks (for example, by using the UNIX fork system call). This approach has some severe drawbacks: tasks are a limited resource (most operating systems can handle fewer than a few hundred simultaneously executing tasks), spawning a new task consumes a prodigious amount of time and system resources, and the new task loses access to its parent's address space. 

In contrast, in a multithreaded system the smallest unit of execution is a thread, not a process. A task or process may consist of one or more threads (usually one designated as the main thread). Setting up a new thread requires little in terms of system resources; threads of the same process have access to the same address space; switching between threads of the same process requires very little system overhead. In fact, I cannot think of any drawbacks a multithreaded operating system has when contrasted with a single-threaded one. 

Threads and Messages 

Earlier I indicated that ownership of windows is assigned to individual threads. Correspondingly, each thread has a private message queue, in which the operating system deposits messages addressed to windows the thread owns. Does this mean that a thread must own at least one window and contain a message loop? 

Fortunately, no; otherwise, the use of threads in typical programming situations would become cumbersome indeed. Threads can exist that own no windows and have no message processing loop whatsoever. 

Consider, for example, a sophisticated mathematical application in which a complex calculation needs to be performed on every element of a two-dimensional array (a matrix). The easiest way to do this is to implement a loop in which the calculation is performed repeatedly. Under 16-bit Windows this approach was strictly forbidden; during the execution of the loop, no other applications could control the processor, and the computer effectively froze. In Win32, however, it is perfectly legitimate to set up a separate thread in which such a calculation is performed, while the application's main thread continues processing any messages the application may receive. The only effect on the system is a performance hit¡ªsomething not entirely unexpected when a complex, processing-intensive calculation is being performed. The thread doing the calculations has no windows, no message queue, no message loop; it does one thing only, and that is the calculation itself. 

In MFC, these threads acquire a name of their own; they are called worker threads, in contrast to the more sophisticated, message queue processing user-interface threads. 

Windows Function Calls 

While the existence of a message loop is perhaps the most distinguishing characteristic of Windows applications, it is by far not the only mechanism through which an application and Windows interact. Windows, like other operating systems, offers a humongous number of system calls to perform a wide variety of tasks, including process control, window management, file handling, memory management, graphical services, communications, and many other functions. 

The "core" set of Windows system calls can be organized into three major categories. Kernel services include system calls for process and thread control, resource management, file and memory management. User services include system calls for the management of user-interface elements, such as windows, controls, dialogs, or messages. Graphics Device Interface (GDI) services provide device-independent graphical output functionality. 

The Windows system also includes many miscellaneous Application Programming Interfaces (APIs). Separate APIs exist for a multitude of tasks; examples include MAPI (Messaging API), TAPI (Telephony API), or ODBC (Open Database Connectivity). The degree to which these APIs have been integrated into the core system varies; for example, OLE (Object Linking and Embedding), although implemented in the form of a series of system Dynamic Link Libraries, or DLLs, is nevertheless considered part of the "core" Windows functionality; other APIs, such as WinSock, are considered "extras" or add-ons. 

This distinction between what is core and what isn't is fairly arbitrary. Indeed, from the perspective of an application there is little difference between a core API function that is part of the Kernel module and a function that is implemented in a DLL. Nothing illustrates this better than the conventions used to invoke API functions from the Visual Basic programming language. All API functions are declared identically, as functions in an external DLL. The only difference is the module name: "Kernel" in the case of a Kernel system call, and the name of the DLL in the case of a call to a DLL function. 

Kernel Services 

Kernel services typically fall into the categories of file management, memory management, process and thread control, and resource management. While far from being an exhaustive list, these categories accurately describe most commonly used Kernel module functions. 

The preferred method of file management differs from what is typically used in C/C++ programs. Instead of accessing files through the standard C library functions for stream or low-level I/O, or through the C++ iostream class, applications should utilize the Win32 concept of a file object and the rich set of functions associated with those. File objects enable accessing files in ways that are not possible using the C/C++ libraries; examples include overlapped I/O and memory mapped files used for intertask communication. 

In contrast, the memory management requirements of most applications are completely satisfied through the C malloc family of functions or the C++ new operator; in a Win32 application, these calls automatically translate into the appropriate Win32 memory management system calls. For applications with more elaborate memory management requirements, sophisticated functions exist for managing virtual memory; for example, these functions can be used to manipulate address spaces that are several hundred megabytes in size by allocating but not committing memory. 

The most important facet of process and thread management concerns synchronization. This problem is new to the Windows environment, as it was not encountered in 16-bit Windows. Under the cooperative multitasking regime of Windows 3.1, applications give up control only at well-defined points during their execution; the execution of competing tasks is synchronous. In contrast, in the preemptive multitasking environment, processes and threads cannot deduce knowledge about the execution status of competing threads. In order to ensure that competing threads that are mutually dependent execute in an orderly fashion, and in order to avoid deadlock situations where two or more threads are suspended indefinitely, waiting for each other, a sophisticated synchronization mechanism is required. In Win32, this is accomplished through a variety of synchronization objects that threads can use to inform other threads about their status, protect sensitive areas of code from reentrant execution, or obtain information about other threads or the status of other objects. 

Speaking of objects, in Win32, many kernel resources (not to be confused with user-interface resources) are represented as kernel objects. Examples include files, threads, processes, and synchronization objects. Objects are typically referred to through handles; some functions exist for the generic manipulation of objects, while others manipulate objects of a specific type. Under Windows NT, objects also have security-related properties. For example, a thread cannot manipulate a file object unless it has appropriate permissions that match the file object's security properties. 

The Kernel module also provides functions to manage user-interface resources. These resources include icons, cursors, dialog templates, string resources, version resources, accelerator tables, bitmaps, and other user-defined resource types. Kernel system calls are not aware of the purpose of a resource; however, they provide functionality to allocate memory for resources, load resources from a disk file (typically, the application's executable file), and purge resources from memory. 

Some areas of Kernel module functionality are specific to Windows NT. For example, the NT Kernel module provides a variety of functions through which the security attribute of kernel objects can be examined and manipulated. 

Another NT-specific area of functionality is tape backup functionality. Calls are available for erasing and formatting a tape and for reading and writing tape contents. 

Accessing the contents of initialization files (INI files) is also accomplished through Kernel module calls such as WriteProfileString or GetPrivateProfileString. Use of these functions is not recommended, however; instead, new applications should use the Windows Registry for storing initialization information. 

The Kernel module also provides the functionality required for 32-bit text-only programs, console applications. At first sight, these programs appear as plain old DOS programs; in reality, these are full-featured 32-bit applications that run from the command line and do not make use of the Windows graphical interface. Nevertheless, these applications can still access a rich set of Win32 system calls; for example, a console application can use virtual memory functions or it can be a multithreaded program. 

There are many other areas of Kernel module functionality, ranging from the simple (such as operations on large integers) to the complex (such as the use of named pipes). 

User Services 

The User module, as its name implies, provides system calls that manage elements and aspects of the user interface. These include functions that handle windows, dialogs, menus, text and graphic cursors, controls, the clipboard, and many other areas. 

In fact, it is through User module functions that awareness of these high-level components of the user interface becomes possible. The Kernel module provides memory allocation, thread management, and other services required for windows to function; the GDI module provides graphic primitives; but it is the User module that integrates these two areas and provides the concept of a window, for example. 

Window management calls include functions to manage a window's size, position, appearance, and window procedure, as well as functions to enable or disable a window and to obtain information about windows. These functions are also used to manage controls, such as buttons, scrollbars, or edit boxes. The User module also contains functions to manage Multiple Document Interface (MDI) child windows. 

Menu-related calls in the User module provide functionality to create, display, and manipulate menus, menu bars, and pop-up menus. 

Through a family of User module functions, applications can manage the shape and appearance of the text cursor (the mouse cursor) and graphic cursor (the caret). 

Management of the Windows clipboard is also accomplished through User module functions. The Windows clipboard is basically a simple mechanism through which applications can exchange data. An application can place data in the clipboard in a variety of public or private clipboard formats; other applications can examine the clipboard and retrieve data in any of the available formats that they can interpret. Most applications provide a set of Edit menu commands (Cut, Copy, Paste) for the explicit manipulation of clipboard contents. 

The User module also provides functions for the management of messages and thread message queues. Applications can use these calls to check the contents of their message queues, retrieve and process messages, and create new messages. New messages can be either sent or posted to any window. A message that has been posted is simply entered into the message queue of the thread that owns the destination window. In contrast, sending a message directly invokes the window procedure of the destination window; the SendMessage function does not return until the destination window has processed the message. Not only does this mechanism bypass the message queue, it also makes it possible for the sending application to obtain a return value before continuing. 

GDI Services 

Graphics Device Interface functions are typically used to perform primitive device-independent graphical operations on device contexts. A device context is essentially an interface to a specific graphical device. It can be used to obtain information about the device and also perform graphical output to the device. 

The information that can be obtained through a device context describes the device in detail. The technology of the device (for example, vector or raster), its type, name, resolution, color capability, font capability, and so on, can all be obtained through appropriate device context calls. 

Graphical output is performed through a device context by passing the handle of the device context to the appropriate GDI output function. Through the device context, a generic, device-independent graphical call is translated into a set of instructions that realize the output on the specific device. For example, when an application calls the GDI function Ellipse, it is the device context that determines which device driver will actually execute the call; the device driver, in turn, may further refer the call to a hardware accelerator, if the video subsystem has such an accelerator capability. 

GDI device contexts can describe a wide variety of devices. Typical device contexts include display device contexts (for output that goes directly to the computer's screen), memory device contexts (for output into a bitmap stored in memory), or printer device contexts (for output that eventually gets translated into printer control codes and sent to the printer). 

A very special kind of a device context is the metafile device context that enables applications to make a permanent record of GDI output calls. Such a record is device-independent and can be played back on any device later. More than a mere convenience feature, metafiles play a crucial role in the device-independent representation of embedded OLE objects, the very mechanism that makes OLE objects portable and enables container applications to display or print them even in the absence of the server application. 

Drawing into a device context usually takes place through logical coordinates. Logical coordinates describe objects using device-independent real-world measurements; for example, a rectangle can be described as two inches wide and one inch high. The GDI provides the necessary functionality for the mapping of logical coordinates to physical coordinates. 

Significant differences exist in the way coordinate mapping takes place in Win32s, Windows 95, and Windows NT. For starters, both Win32s and Windows 95 are limited to 16-bit coordinates. In Win32s, this is due to the Windows 3.1 limitation that 16-bit integers are used to represent coordinate positions; in Windows 95, the reason is pretty much the same¡ªthe restriction exists due to the existence of a lot of legacy code inherited from Windows 3.1. In contrast, Windows NT can handle 32-bit world coordinates, making it an operating system that is much better suited for sophisticated graphical applications¡ªCAD programs, for example. 

All three operating systems support simple mappings from the logical to the physical coordinate space. This mapping is determined by the values specifying the coordinate origin and signed extent of the logical and physical space. The coordinate origins basically specify a horizontal and vertical displacement; the extents determine the orientation and scale of objects after the mapping. 

In addition, Windows NT offers what are called world transformation functions. Through these functions, any linear transformation can be used for mapping the logical to the physical coordinate space; in addition to translations and scaling, output can also be rotated or sheared. 

Of the large number of GDI functions, perhaps the ones used most frequently are those that draw various objects; examples include the Rectangle, Ellipse, Polygon, or TextOut functions. (These are just a few representative cases; the actual number of these functions is very large.) 

Other frequently used drawing functions are the bit blit functions that are used to quickly and efficiently copy bitmaps. (Well, maybe not that quickly and efficiently; for applications, such as games, which really require blazing speed, there is a faster, albeit less safe, set of bitmap manipulation functions in the Windows Game SDK.) 

Other functions manage device contexts. Device contexts for various devices can be created and destroyed, their state can be saved and reloaded, or information about them can be obtained through these functions. 

Another set contains functions that manipulate coordinate transformations. Functions common to all Win32 platforms can be used to set or retrieve the origin and extent of the window (the logical coordinate space) and the viewport (the coordinate space of the target device). NT-specific functions can be used to manipulate sophisticated world transformation matrixes. 

GDI functions can also be used to manipulate palettes. This is mostly useful for applications that strive to achieve color fidelity on devices that offer a limited number of simultaneous colors¡ª256 colors, for example. By manipulating the color palette, these applications (a typical example would be a viewer for graphic files such as GIF or PCX format files) can select a set of colors that best match the colors in the picture about to be displayed, and thus reduce reliance on dithering techniques, providing a better quality image. Palette manipulation can also be used for palette animation, a technique that uses palette changes to create the impression of motion on the screen. 

Yet another GDI feature is the ability to create and manage GDI objects. Brushes, pens, fonts, bitmaps, or palettes can be created and selected into device contexts to determine the appearance of shapes that are drawn subsequently. 

Speaking of fonts, the GDI module also provides functionality to handle fonts (including TrueType fonts). 

Other functions exist to manage two types of metafiles (the old-style Windows Metafiles and the new Enhanced Metafiles). Metafiles can be created, saved, reloaded, and replayed into any device context. 

The GDI Module also provides the capability to manage regions and clipping. Clipping is of utmost importance in the Windows environment because it enables applications to draw to a display surface without regard to the boundaries of the surface (a client window, for example), or the possibility that parts of the surface are obscured by other objects on the screen. 

Other APIs 

Windows is much more than the capabilities implemented in the three "core" modules. Many other modules, many other APIs, exist¡ªeach implementing another specific area of functionality. Here are some of the more commonly used APIs, many of which are discussed in substantially more detail later: 

· Common Control functions are used to manipulate the new Windows 95 common controls. Needless to say, these functions are only available in Windows 95 or later, or Windows NT 3.51 or later, and Win32s 1.3 or later. 

· Common Dialogs include system-supplied dialogs for opening a file for reading or writing, selecting a color from a color palette, selecting a font from the set of fonts installed on your system, and specifying a search or search and replace operation. These dialogs can be used as is, or their functionality can be modified through new dialog templates and window procedures. 

· MAPI, or the Messaging Applications Programming Interface, gives applications access to messaging functions through mail delivery systems like Microsoft Mail. Actually, there are three variants of MAPI that are commonly used: Simple MAPI is used by older applications that are messaging-aware; that is, applications that do not require the presence of a messaging subsystem but can make use of it if it is there. Microsoft Word falls into this category. Newer messaging-aware and messaging-enabled applications (those that rely on the presence of a messaging subsystem) should use CMC, the Common Messaging Calls interface. Finally, sophisticated message-based workgroup applications may use the full range of MAPI services (Extended MAPI). 

· MCI is the Multimedia Control Interface. Through MCI functions, applications have easy access to the video, audio, and MIDI capabilities of Windows. Most multimedia applications would use MCI functions for media playback; some applications would utilize more sophisticated MCI capabilities for the editing of media files. 

· The OLE API is a very rich collection of system calls implementing all aspects of OLE functionality. This includes OLE container and server functionality for in-place editing, activating objects, drag and drop, OLE Automation, and OLE custom controls. 

· TAPI is the Telephony API. Applications can use TAPI for a device-independent method of accessing telephony-based resources (modems, FAX-modems, voice messaging hardware). 

There are several areas of network-related functionality; examples include WinSock, the Windows Sockets library, RAS, the Remote Access Service, and RPC, the Remote Procedure Call library. 

Error Reporting 

Many Windows functions use a common mechanism for error return. When an error occurs, these functions set a thread-specific error value that can be retrieved by calling the GetLastError function. The 32-bit values returned by this function are defined in the header file winerror.h or in library-specific header files. 

Functions in your application can also set this error value by calling SetLastError. Application-specific error codes should have bit 29 of the value set; error codes with this bit set are reserved by the operating system for application-specific use. 

Using Standard C/C++ Library Functions 

Win32 applications can also use the standard set of C/C++ library functions, although some limitations apply. 

First and foremost, a Windows application does not normally have access to the traditional stdin, stdout, or stderr streams, the corresponding DOS file handles (0, 1, and 2), or C++ iostream objects (cin and cout). Only text-based console applications can use these standard file handles. (However, Windows applications, too, may have a standard input or standard output open if they are launched with their I/O redirected.) 

As I mentioned already, Windows applications should use the Win32 file management functions for file handling. This is not to say that the standard C stream and low-level I/O functions or the C++ iostream library are no longer available; it is simply that these libraries do not have all the capabilities available through the Win32 API. For example, the C/C++ library functions are not aware of a file object's security properties; nor can they be used for asynchronous, overlapped input and output operations. 

Applications should also refrain from using the MS-DOS style C library process control functions (the exec family of functions) in favor of CreateProcess. 

Most other C/C++ libraries can be used without restrictions. In particular, although the Win32 API offers a richer function set for memory manipulation, most applications do not require any services more sophisticated than those offered by malloc or the C++ new operator. The C/C++ math, buffer, string manipulation, character and byte classification, data conversion, and other routines can also safely be used. 

Win32 applications should not attempt to access MS-DOS Interrupt 21 or IBM PC BIOS functions. The APIs that were available for this purpose in 16-bit Windows have been removed. Applications that require low-level access to system hardware are probably best developed using the appropriate DDK (Device Driver Development Kit). 

Platform Differences 

While the Win32 API is intended to serve as a platform-independent API, there exist some platform differences due to limitations in the underlying operating system. Some of these have already been mentioned earlier in this chapter; here, we review and summarize features that are specific to the Windows NT, Windows 95, and Win32s platforms. 

Of the three platforms, two (Windows NT and Windows 95) can be used as development platforms with Visual C++. I have decided to include some notes reflecting my experience in actually developing code using these operating systems. 

Windows NT 

The most complete implementation of the Win32 API can be found in Windows NT. Since Version 3.51, Windows NT offers the same set of new custom controls that are available in Windows 95. Presently, the only shortcoming of Windows NT relative to Windows 95 is the lack of Windows 95 style shell functionality. Even this shortcoming may not be around much longer; at the time of this writing, a fairly stable "preview" implementation has already been released. (Note, however, that this implementation is unfortunately not yet fully compatible with the Visual C++ development system.) 

Of the three platforms, only Windows NT offers Unicode support, advanced security features, and system level support for tape backup. Being a server platform, Windows NT obviously offers a much richer server environment than the other two platforms. Thanks to a fully 32-bit implementation, Windows NT is also the most stable of the three platforms, making it ideally suited as a development environment. 

On the down side, Windows NT is by far the slowest, most resource-hungry of the three platforms. The barest minimum on which Windows NT runs at acceptable performance is a 33 MHz 486 system with at least 16MB of memory. The Visual C++ documentation states that at least 20 MB of RAM is required for acceptable performance. In practice, a well-equipped NT-based development system would have 32MB of RAM, a 1GB hard disk drive, and at least a 486/66 processor (but preferably a Pentium). 

Windows 95 

While Windows 95 lacks some of the features Windows NT offers, it more than makes up for it in terms of performance and compatibility with older, lower-end hardware. Most of the features missing from Windows 95 will not be greatly missed by the majority of users. 

What is missing? NT's advanced security features, Unicode support, and system-level support for tape backup have already been mentioned. The OpenGL graphics library is also unavailable in Windows 95. 

For graphics programmers coming from the NT environment, there are a few "gotchas"; among these are the lack of GDI support for world transformation functions and the limitation of coordinate spaces to 16-bit coordinate values. 

On the other hand, Windows 95 delivers a flexible, stable multithreaded environment comparable to Windows NT in most aspects. It provides a very rich subset of the Win32 API; with the exception of the NT-specific features already mentioned, most API functions are available. 

On the performance side, rumor says that most of Windows NT has been developed as relatively high-level portable C/C++ code; in contrast, Windows 95 inherits a fair amount of old Intel-specific Windows 3.1 code, and much of the new code has also been hand-optimized for this environment. It shows. For the functionality it delivers, the memory footprint of Windows 95 is tiny; people have been able to run it successfully on old 4MB 386-based systems. My personal experience with respect to low-end hardware is limited to my 8MB 486Sx25 notebook computer; I was quite delighted to find that not only does Windows 95 run on this machine very nicely, even the Visual C++ development system does a more than adequate job compiling large projects. 

Speaking of Visual C++, Windows 95 makes an excellent development platform. Its stability, although unlike the rocklike nature of Windows NT, is still fabulous. All 32-bit development tools, including console applications, run remarkably well on this platform. And if my experience with my notebook machine is any indication, even a low-end machine with a 25 MHz 486 CPU, 8MB of RAM, and a 120MB hard disk drive is sufficient for working on small to medium-sized projects. 

Still on the performance side, the existence of the newly released Windows 95 Games SDK must also be mentioned. This SDK contains a series of libraries and low-level drivers to provide high-performance graphics and sound APIs facilitating the development of sophisticated action games for Windows 95. For the time being, this SDK is not available for Windows NT. 

Win32s 

Win32s is by far the most restrictive of the three 32-bit environments. Foremost among its restrictions is its inability to run multithreaded applications. 

Like Windows 95, Win32s is also incompatible with NT-specific features like Unicode, security, and tape backup functionality. Win32s does not support the OpenGL graphics library either. 

Win32s has no support for the long filenames of Windows 95 and Windows NT. It also does not support the new common controls. Access to 32-bit MAPI functionality is also unsupported. 

Win32s does not support overlapped I/O functionality, not even for communication devices. A curious consequence of this fact is that for a communications application to work under all three platforms, it may be necessary to provide both a 16-bit and a 32-bit DLL implementing platform-specific access to communications ports. 

Win32s also shares some of the "gotchas" with Windows 95. Like Windows 95, the Win32s GDI implementation is limited to 16-bit coordinates and does not support world transformations. 

Win32s cannot be used as a development platform with the 32-bit Visual C++ compiler. A good thing, too; with the dismal stability of Windows 3.1, development using this platform would likely be a frustrating experience. 

In short, if your users still run Windows 3.1 with Win32s, urge them to upgrade to Windows 95. The stability improvements alone justify the effort and the expense, and your effort convincing them will be amply rewarded by the reduced number of support calls. 

Other Platforms 

So far, I have been conspicuously silent about using Visual C++ to develop code for other hardware or software platforms. 

The Windows NT implementations on the PowerPC, DEC Alpha, or MIPS CPUs are, for all intents and purposes, compatible with the implementations on the Intel family of CPUs. Well-written applications should be recompilable on these platforms with no modifications. Obviously, you must have the platform-specific version of the Visual C++ development system; cross-platform compilation is not possible. 

Visual C++ can also be used to create code for Macintosh computers. In this case, the Intel version of Visual C++ is actually used as a cross-platform development product, after suitable extensions have been purchased and installed. There are many restrictions on what Win32 features applications intended to run on the Macintosh platform can use. (Generally, the Windows Portability Library for the Macintosh has limitations comparable to those of Win32s.) 

In addition, there are some promising attempts at porting the MFC library to various UNIX platforms and implementing Win32 compatibility libraries on UNIX. 

Summary 

Visual C++ applications are said to be targeted for the Win32 environment. This includes the various platform-specific versions of Windows NT, the new Windows 95 operating system, and the 32-bit Win32s extension to Windows 3.1. Additionally, Visual C++ can be used as a cross-platform development environment for the Macintosh. 

At the core of every Windows application is its message loop. The Windows operating system delivers information about a variety of events in the form of messages to cooperating applications, which in turn process those messages by dispatching them to the appropriate window procedure. A window is a rectangular area in the screen; it is also an abstract entity that receives and processes messages. 

Windows are owned by threads, which are simultaneous paths of execution within an application. Threads, in turn, are owned by processes or applications. 

Applications also interact with Windows by calling one of the many operating system functions implemented either in the "core" of Windows or as a variety of add-ons. The core can roughly be divided into three categories: the Kernel module provides memory, file, and process management; the User module manages user-interface elements (specifically, windows) and handles messages; the GDI module provides graphical services. 

Other modules implement specific areas of functionality, such as OLE, MAPI, networking, common controls and dialogs, and multimedia. 

With some restrictions, Visual C++ applications can also use standard C/C++ library functions. 

The three primary Win32 platforms differ in the extent to which the Win32 API is implemented. The most complete implementation is offered by Windows NT. Windows 95 offers a very rich subset, with some NT-specific elements and some advanced components missing. Win32s, on the other hand, offers a very restrictive implementation; most notable among these restrictions is its inability to run multithreaded applications.

 8 ¡ª The Message Loop 
It has often been said sarcastically about Windows programming that something must be wrong with an operating system that requires hundreds of lines of code for the simplest program of all, one which displays "Hello, World!" and does nothing else. But is it really true, or is it just another urban legend about the evil company Microsoft and its monstrous operating system contraption called Windows? 

The "Real" Hello, World Program 

Consider the dialog shown in Figure 8.1. Make a guess: How many lines of C code, how many resource file lines, and so on, were required to create an application that displayed just this dialog, nothing else? How many times longer is this program than the infamous "original" Hello, World program that appeared at the beginning of Chapter 1 of the Kernighan-Ritchie C bible? 
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Figure 8.1. The simplest Hello, World application under Windows. 

You guessed it right. The number of lines (not counting the blank line inserted for cosmetic purposes only) is FIVE in both cases. The Windows version of the Hello, World program is shown in Listing 8.1. 

Listing 8.1. Source of the simplest Hello, World program, hello.c
#include <windows.h>

int WINAPI WinMain(HINSTANCE d1, HINSTANCE d2, LPSTR d3, int d4)

{

      MessageBox(NULL, "Hello, World!", "", MB_OK);

}

Compiling this program is not any more difficult than compiling the original Hello, World program from the command line. (Let this also serve as a little preview on using the Visual C++ compiler from the command line.) In order for the compiler to work from the command line, it is necessary to first run the batch file VCVARS32.BAT, which Visual C++ creates in its binary files directory MSDEV\BIN during installation. (Depending on your operating system and its configuration, you may find it necessary to enlarge the environment space allocation for DOS boxes to avoid any "Out of Environment Space" errors this batch file may cause.) 

Afterwards, all you have to do is type cl hello.c user32.lib and voil?[ag]! The program hello.exe is ready to be executed{md}which you can do by simply typing hello at the command line; both Windows 95 and Windows NT can launch Windows applications this way. 

For all its simplicity, the behavior of this "application," if it can be thought to deserve that title, is surprisingly complex. Unlike its "plain" C counterpart, this application not only displays the message, it interacts with the user in a complex fashion. After initially displaying its message, the program "stays alive" on the screen¡ªmeaning it can be moved around with the mouse. The mouse cursor can be clicked on the OK button to dismiss the program; alternatively, by clicking the mouse over the OK button and keeping the mouse button depressed, you can watch the OK button change its appearance as you move the mouse cursor over it. The window also has a simple menu that can be invoked by pressing Alt+Space or, under Windows 95, clicking its title area with the right mouse button; the single Move command can be used to change the window's position using the clipboard. Finally, the application can also be dismissed by using the Enter or Escape keys. 

Remarkably rich behavior from a five-line piece of code, don't you think? But where does all this complexity come from? The secret lies in the magic words message loop and window procedure; unfortunately, a five-liner is not exactly a very revealing piece of programming excellence when it comes to understanding Windows application behavior. We have to move on to something more complex. 

A Simple Message Loop: Sent and Posted Messages 

The problem with our first Hello, World program is its simplicity. The MessageBox call at the center of this application encompasses (and hides!) a lot of functionality. In order to better understand what is taking place, we have to make this functionality more visible; in other words, we have to create a window that we manage ourselves, instead of letting the MessageBox function do this for us. 

The new version of hello.c is shown in Figure 8.2. This time, the "Hello, World!" text appears as part of a button that occupies the entire client area. (It also appears in the window's title bar.) This is due to the fact that I employed a few unorthodox shortcuts to keep the application as simple as possible; this allows us to focus on the issues at hand instead of getting bogged down with irrelevant details. 

[image: image6.png]Hello, Worl

Hello, World!





Figure 8.2. Version of Hello, World with a simple message loop. 

A "typical" Windows program, during initialization, registers a window class first, and then creates its main window using the newly registered class. For now, I wanted to avoid having to register a new class and all that comes with it (such as writing a window procedure); instead, I decided to use one of the existing window classes, the BUTTON class. The functionality of this class does not enable me to identically reproduce the behavior of the previous version of hello.c, but that is not the purpose anyway; the purpose is to demonstrate the function of a very simple message loop. This new version of the application is shown in Listing 8.2. 

Listing 8.2. Source of Hello, World with a simple message loop.
#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE d2,

                                        LPSTR d3, int d4)

{

    MSG msg;

    HWND hwnd;

    hwnd = CreateWindow("BUTTON", "Hello, World!",

                        WS_VISIBLE | BS_CENTER, 100, 100, 100, 80,

                        NULL, NULL, hInstance, NULL);

    while (GetMessage(&msg, NULL, 0, 0))

    {

        if (msg.message == WM_LBUTTONUP)

        {

            DestroyWindow(hwnd);

            PostQuitMessage(0);

        }

        DispatchMessage(&msg);

    }

    return msg.wParam;

}

While not exactly the purpose of this exercise, I cannot help but point out that the application is still far from the legendary hundreds of lines that displaying "Hello, World!" is supposed to take; even with my publisher's formatting requirements, it still fits conveniently in one screen. 

This example reveals the infamous message loop. After creating its window, the program enters into a while loop where it makes repeated calls to the GetMessage Windows function. Whenever the application receives a message, GetMessage returns; its return value is FALSE only if the message received was a WM_QUIT message. The special case of a WM_LBUTTONUP message is handled; the call to DestroyWindow causes the application's window to be destroyed, while the call to PostQuitMessage ensures that the GetMessage function receives a WM_QUIT message, which causes the loop to terminate. Messages other than WM_LBUTTONUP are dispatched through the DispatchMessage function. 

Dispatched through the DispatchMessage function¡ªbut dispatched to whom? A good question. These messages are in fact dispatched to the default window procedure of the BUTTON class. As in the case when we called the MessageBox function, this window procedure remains hidden from us, as it is implemented as part of the operating system. 

When handling WM_LBUTTONUP messages, a seemingly more elegant solution would be to include the call to PostQuitMessage in another case block that responds to WM_DESTROY messages. The problem is that WM_DESTROY messages are typically not posted but sent to the application. There is a subtle, but crucial difference. 

When a message is posted, the application retrieves it through a GetMessage or PeekMessage call at the time of its own choosing (PeekMessage is used when the application wants to perform some tasks when it has no messages to process). In contrast to posting, sending a message to an application implies a direct, immediate call to the window procedure, bypassing any message loops. So in our case, the WM_DESTROY message that is generated in response to our call to DestroyWindow is never seen by the GetMessage loop; instead, it is passed directly to the window procedure of the BUTTON window class. 

This example still failed to show us the innards of the window procedure. Therefore, it is time to move on to yet another, more sophisticated version of our Hello, World program. But do not despair. . .we are still far from hundreds of lines! 

Window Procedures 

The new version of hello.c, shown in Listing 8.3, registers its own window class. Done in part for cosmetic reasons (so we can do away with the ugly kludge of using the BUTTON class for our purposes) the most important reason for this is so that we can install our own window procedure. 

Listing 8.3. Source of Hello, World with a new window class.
#include <windows.h>

void DrawHello(HWND hwnd)

{

    HDC hDC;

    PAINTSTRUCT paintStruct;

    RECT clientRect;

    hDC = BeginPaint(hwnd, &paintStruct);

    if (hDC != NULL)

    {

        GetClientRect(hwnd, &clientRect);

        DPtoLP(hDC, (LPPOINT)&clientRect, 2);

        DrawText(hDC, "Hello, World!", -1, &clientRect,

                 DT_CENTER | DT_VCENTER | DT_SINGLELINE);

        EndPaint(hwnd, &paintStruct);

    }

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_PAINT:

            DrawHello(hwnd);

            break;

        case WM_DESTROY:

            PostQuitMessage(0);

            break;

        default:

            return DefWindowProc(hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

                                        LPSTR d3, int nCmdShow)

{

    MSG msg;

    HWND hwnd;

    WNDCLASS wndClass;

    if (hPrevInstance == NULL)

    {

        memset(&wndClass, 0, sizeof(wndClass));

        wndClass.style = CS_HREDRAW | CS_VREDRAW;

        wndClass.lpfnWndProc = WndProc;

        wndClass.hInstance = hInstance;

        wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);

        wndClass.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

        wndClass.lpszClassName = "HELLO";

        if (!RegisterClass(&wndClass)) return FALSE;

    }

    hwnd = CreateWindow("HELLO", "HELLO",

                        WS_OVERLAPPEDWINDOW,

                        CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,

                        NULL, NULL, hInstance, NULL);

    ShowWindow(hwnd, nCmdShow);

    UpdateWindow(hwnd);

    while (GetMessage(&msg, NULL, 0, 0))

        DispatchMessage(&msg);

    return msg.wParam;

}

I can almost sense your outrage: What? Sixty-four lines? Worse yet, to compile this program successfully you actually have to specify the gdi32.lib library on the command line? (Compile with cl hello.c user32.lib gdi32.lib.) 

Rest assured, this is as far as we go; our text version of Hello, World will not get any more complex at this time. And at 64 lines, this is a "full-featured" Windows application (see Figure 8.3); it has a system menu, it can be moved, resized, minimized and maximized, it knows when to redraw itself, responds to the Close menu item or the Alt-F4 keystroke. Not bad, for an application that still fits easily on a printed page! 
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Figure 8.3. Version of Hello, World with its own window class. 

So how does this work? As before, execution starts with the WinMain function. The first thing the application does is checking whether it has any copies already running. If so, there is no need to re-register its window class. Otherwise, the window class is registered, its properties and behavior determined through the WndClass structure. In particular, it is through the WndClass structure that the address of the window procedure, WndProc, is given. 

Next, an actual window is created through the CreateWindow system call. Once the window is displayed, WinMain enters the message loop; the message loop exits when GetMessage returns FALSE upon receiving a WM_QUIT message. 

Finally, through WndProc, the purpose and structure of the mysterious window procedure are revealed. A typical window procedure is nothing but a giant switch statement. Depending on the message received, different functions are called that perform the necessary action. In our case, we process exactly two messages: WM_PAINT and WM_DESTROY. 

WM_PAINT messages indicate that parts or all of the application's window must be redrawn. Sophisticated applications would normally not redraw parts of the application window for which redrawing has not been requested; in our case, we simply don't care, we just redisplay the "Hello, World!" text whenever a WM_PAINT message is received. 

WM_DESTROY messages are received in response to user actions that cause the application's window to be destroyed. Our response to this is a call to PostQuitMessage; by doing this, we ensure that the GetMessage function in WinMain receives a WM_QUIT message, causing the main message loop to terminate. 

What happens to messages that are not processed by our window procedure? They are instead passed to the default window procedure, DefWindowProc. This function determines the behavior of the application's window and many of its nonclient area components (such as its title bar) through the default handling of messages that it provides. 

A companion to DefWindowProc is DefDlgProc. This default window procedure is specifically designed for windows that are dialog windows. This function provides handling for dialog-specific messages and also provides default management of the dialog's controls for cases when the dialog loses or gains focus. 

If you have access to the Windows 3.1 SDK (perhaps through a subscription to the Microsoft Developer Network, level 2), it may be an educational exercise to look at the DEFPROC sample; this "sample" is nothing else but the source code of the two default window procedures, DefWindowProc and DefDlgProc. 

Comparison with generic.c 

So if it is this easy to write a Hello, World program with just a few lines of code, what is the explanation for the common myth that even a simple program like this takes several hundred lines of code in Windows? 

The explanation to this curious question can be found in how Microsoft presented its Windows Software Development Kit, or SDK, back in the "good old days." The tutorial centerpiece of the old SDK was the Generic Windows Application, a program that did nothing other than display a window with standard decorations and provide an About, a Help, and an Exit function. This program successfully served as the skeleton for many well-written Windows applications. 

For all its simplicity, the generic.c source code was still almost 500 lines long, with another nearly 200 lines in its resource file, generic.rc. No wonder programmers in the old days found Windows programming forbidding. Nevertheless, even in the old days it was not necessary to reproduce these hundreds of lines of code "from scratch" every time you embarked upon a new Windows project; on the contrary, generic.c was used as a starting point, and it provided a default implementation for all the basic mechanics of a Windows application. It also influenced both the visual appearance and code style of Windows applications; for example, although not strictly necessary, most Windows applications ended up having separate InitApplication and InitInstance functions. 

The task of the Visual C++ programmer is much easier nowadays, although really not that different. Instead of starting from a static skeleton, generic.c, MFC programmers start with an application skeleton dynamically created by the Visual C++ AppWizard. But the fact that you start off from a skeleton application that implements a framework for the basic mechanics of your application has not changed. In my opinion, the availability of a well-written skeleton application had a significant positive influence on Windows programming. 

Multiple Message Loops and Window Procedures 

In all the examples that we build so far (namely, the three versions of hello.c) there was a single message loop in every one of them. (Well, in the case of the first one, the presence of the message loop was implicit in the MessageBox function call.) Can there be applications with more than one message loop? And if so, why would you want to write an application that way? 

The answer to the first question is a sound yes. Applications can have as many message loops as they want. Consider the simplest of these situations, when an application that has its own message loop makes a call to the MessageBox function; would this call not imply that, temporarily, the implicit message loop in MessageBox takes over the processing of messages while the message is displayed? 

This scenario also suggests an answer to the second question. You would implement a second (or third, or fourth) message loop when, during a particular stage of execution of your program, messages must be processed in a fashion that is markedly different from normal processing. 

Consider, for example, the case of drawing with mouse capture. An application can provide a freehand drawing capability by looking for mouse events and capturing the mouse when the left button is pressed within its client area. While the mouse is captured, the application is informed of every mouse movement through a separate message; thus, the application can draw a freehand line by adding a new segment whenever the user moves the mouse. The mouse is released when the user releases the left mouse button. 

Our fourth and final version of Hello, World, shown in Figure 8.4, is exactly such an application. This 94-line enormity, which must be compiled with the command line cl hello.c user32.lib gdi32.lib, although far less elegant than the Visual C++ "Scribble" tutorial, actually enables you to draw the text "Hello, World!" using the mouse cursor. 
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Figure 8.4. A graphical version of Hello, World. 

Even a cursory glance at the application's source code, shown in Listing 8.4, reveals the existence of two while loops with calls to the GetMessage function. The main message loop found in WinMain is not different from before; the new stuff is in the DrawHello function. 

Listing 8.4. Source of the graphical version of Hello, World.
#include <windows.h>

void AddSegmentAtMessagePos(HDC hDC, HWND hwnd, BOOL bDraw)

{

    DWORD dwPos;

    POINTS points;

    POINT point;

    dwPos = GetMessagePos();

    points = MAKEPOINTS(dwPos);

    point.x = points.x;

    point.y = points.y;

    ScreenToClient(hwnd, &point);

    DPtoLP(hDC, &point, 1);

    if (bDraw) LineTo(hDC, point.x, point.y);

    else MoveToEx(hDC, point.x, point.y, NULL);

}

void DrawHello(HWND hwnd)

{

    HDC hDC;

    MSG msg;

    if (GetCapture() != NULL) return;

    hDC = GetDC(hwnd);

    if (hDC != NULL)

    {

        SetCapture(hwnd);

        AddSegmentAtMessagePos(hDC, hwnd, FALSE);

        while(GetMessage(&msg, NULL, 0, 0))

        {

            if (GetCapture() != hwnd) break;

            switch (msg.message)

            {

                case WM_MOUSEMOVE:

                    AddSegmentAtMessagePos(hDC, hwnd, TRUE);

                    break;

                case WM_LBUTTONUP:

                    goto ExitLoop;

        default:

            DispatchMessage(&msg);

            }

        }

ExitLoop:

        ReleaseCapture();

        ReleaseDC(hwnd, hDC);

    }

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_LBUTTONDOWN:

            DrawHello(hwnd);

            break;

        case WM_DESTROY:

            PostQuitMessage(0);

            break;

        default:

            return DefWindowProc(hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

                                        LPSTR d3, int nCmdShow)

{

    MSG msg;

    HWND hwnd;

    WNDCLASS wndClass;

    if (hPrevInstance == NULL)

    {

        memset(&wndClass, 0, sizeof(wndClass));

        wndClass.style = CS_HREDRAW | CS_VREDRAW;

        wndClass.lpfnWndProc = WndProc;

        wndClass.hInstance = hInstance;

        wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);

        wndClass.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

        wndClass.lpszClassName = "HELLO";

        if (!RegisterClass(&wndClass)) return FALSE;

    }

    hwnd = CreateWindow("HELLO", "HELLO",

                        WS_OVERLAPPEDWINDOW,

                        CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,

                        NULL, NULL, hInstance, NULL);

    ShowWindow(hwnd, nCmdShow);

    UpdateWindow(hwnd);

    while (GetMessage(&msg, NULL, 0, 0))

        DispatchMessage(&msg);

    return msg.wParam;

}

Previously, DrawHello merely put out a text string with the words "Hello, World!" in it. The new version is much more complex. Its work begins by checking whether any other application is already capturing the mouse or not, and acquiring a device context handle for the main window. Next, it captures the mouse via the SetCapture function, thus instructing Windows to send the application WM_MOUSEMOVE messages. 

The DrawHello function also makes a call to the helper function AddSegmentAtMessagePos which, when called with the Boolean value FALSE as its third parameter, simply moves the drawing position to the position of the most recent message. For this, it makes use of the GetMessagePos function, which retrieves the position of the mouse cursor at the time the most recent message was created. AddSegmentAtMessagePos also makes use of coordinate transform functions to translate the screen coordinates of the mouse into logical coordinates in the window. 

After the call to AddSegmentAtMessagePos, the DrawHello function enters its new message loop. While the mouse is captured, we expect special behavior from our application; most notably, it is expected to follow mouse movements on the screen by drawing additional freehand segments. This is again accomplished with calls to AddSegmentAtMessagePos with the third parameter set to TRUE, whenever a WM_MOUSEMOVE message is received. 

This message loop terminates when the mouse button is released, or when the application loses mouse capture for whatever reason. At that time, DrawHello returns, and the primary message loop resumes processing subsequent messages. 

Was it really necessary to implement this application with two message loops? Could we not have handled WM_MOUSEMOVE messages in our window procedure instead, dispatched there through the main message loop? It is certainly possible; however, organizing code the way demonstrated here makes it much more maintainable and helps avoid extremely large and complex window procedures. 

Summary 

Every Windows application is built around a message loop. A message loop makes repeated calls to the GetMessage or PeekMessage functions and retrieves messages, which it then dispatches to window procedures through DispatchMessage. 

Window procedures are defined for window classes at the time the window class is registered through RegisterClass. A typical window procedure contains a switch statement with case blocks for all messages the application is interested in; other messages are dispatched to the default window procedure DefWindowProc (or DefDlgProc in the case of dialog windows). 

Messages can be posted or sent to an application. Posted messages are deposited in a message queue, from which GetMessage or PeekMessage retrieves them. In contrast, sending a message implies an immediate call to the window procedure, bypassing the message queue and the message loop. 

An application can have several message loops depending on its requirements. Although it is never required to have more than one message loop, this approach can aid in the development of better organized, more maintainable code.

9 ¡ª Windows, Dialog Boxes, and Controls 
A window in Windows can be defined as a rectangular area on the screen. However, this definition, in all its simplicity, hides the volumes of functionality behind the abstract idea of a window as the primary unit through which a user and a Windows application interact. 

A window is not only an area through which an application can present its output; it is also a target of events, a target of messages within the Windows environment. Although the window concept in Windows predates the use of object-oriented languages on the PC by several years, the terminology is more than appropriate here: the properties of a window determine its appearance, while its methods determine how it responds to user input. 

A window is identified by a window handle. This handle (usually a variable of type HWND) uniquely identifies each window in the system. The list includes the "obvious" application windows and dialog boxes as well as the less obvious ones such as the desktop, certain icons, or buttons. User-interface events are packaged into Windows messages with the appropriate window handle attached and then sent, or queued, to the application (or thread, to be more precise) that owns that window. 

Needless to say, Windows offers a lot of functionality covering the creation and management of windows. 

The Window Hierarchy 

Windows maintains its windows (I wish there were a way to talk about windows within Windows without turning every second sentence into an unintentional joke!) in a hierarchical organization. Each window has a parent and zero or more siblings. At the root of all windows is the desktop window, created by Windows at startup time. The parent window for top-level windows is the desktop window; the parent window for child windows is either a top-level window or another child window higher up in the hierarchy. Figure 9.1 demonstrates this hierarchy by dissecting a typical Windows screen. 
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Figure 9.1. The window hierarchy. 

Actually, the situation under Windows NT is somewhat more complex. Unlike its simpler cousins, Windows NT has the capability to maintain multiple desktops simultaneously. In fact, Windows NT normally maintains three desktops: one for the Winlogon screen, one for user applications, and one for the screen saver. 

The visual window hierarchy normally reflects the logical hierarchy. That is, windows at the same hierarchy level are normally displayed in the Z-order, which is essentially the order in which siblings appear. However, this order can be changed for top-level windows. Top-level windows with the extended window style WM_EX_TOPMOST appear on top of any non-topmost top-level windows. 

Another relationship exists between top-level windows. A top-level window may have an owner, which is another top-level window. An owned window always appears on top of its owner and disappears if its owner is minimized. A typical case of a top-level window owned by another occurs when an application displays a dialog box. The dialog box is not a child window (it is not confined to the client area of the application's main window), but it remains owned by the application window. 

Several functions enable applications to traverse the window hierarchy and find a specific window. Here's a review of a few of the more frequently used functions: 

GetDesktopWindow. Through the GetDesktopWindow function, an application can retrieve the handle of the current desktop window. 

EnumWindows. The EnumWindows function enumerates all top-level windows. A user-defined callback function, the address of which is supplied in the call to EnumWindows, is called once for every top-level window. EnumWindows does not enumerate top-level windows that are created after the function has been called, even if it has not yet completed the enumeration when the new window is created. 

EnumChildWindows. The EnumChildWindows function enumerates all child windows of a given window, identified by a handle that is supplied in the call to EnumChildWindows. The enumeration is accomplished by a user-defined callback function, the address of which is also supplied in the call to EnumChildWindows. This function also enumerates descendant windows; that is, child windows that are themselves children (or descendants) of child windows of the window specified in the call to EnumChildWindows. 

Child windows that are destroyed before they are enumerated, or child windows that are created after the enumeration process started, will not be enumerated. 

EnumThreadWindows. The EnumThreadWindows function enumerates all windows owned by a specific thread by calling a user-supplied callback function once for every such window. The handle to the thread and the address of the callback function are supplied by the application in the call to EnumThreadWindows. The enumeration includes top-level windows, child windows, and descendants of child windows. 

Windows that are created after the enumeration process began are not enumerated by EnumThreadWindows. 

FindWindow. The FindWindow function can be used to find a top-level window by its window class name or window title.

GetParent. The GetParent function identifies the parent window of the specified window. 

GetWindow. The GetWindow function offers the most flexible way for manipulating the window hierarchy. Depending on its second parameter, uCmd, this function can be used to retrieve the handle to a window's parent, owner, sibling, or child windows. 

Window Management 

Typically, an application creates a window in two steps. First, the window class is registered; next, the window itself is created through the CreateWindow function. The window class determines the overall behavior of the new window type, including most notably the address of the new window procedure. Through CreateWindow the application controls minor aspects of the new window, such as its size, position, and appearance. 

The RegisterClass Function and the WNDCLASS Structure 

A new window class is registered when an application calls the following function: 

ATOM RegisterClass(CONST WNDCLASS *lpwc);

The single parameter of this function, lpwc, points to a structure of type WNDCLASS describing the new window type. The return value is a Windows atom, a 16-bit value identifying a unique character string in a table maintained by Windows. 

The WNDCLASS structure is defined as follows: 

typedef struct _WNDCLASS {

    UINT    style;

    WNDPROC lpfnWndProc;

    int     cbClsExtra;

    int     cbWndExtra;

    HANDLE  hInstance;

    HICON   hIcon;

    HCURSOR hCursor;

    HBRUSH  hbrBackground;

    LPCTSTR lpszMenuName;

    LPCTSTR lpszClassName;

} WNDCLASS;

The meaning of some of these parameters is fairly straightforward. For example, hIcon is a handle to the icon used to represent minimized windows of this class; hCursor is a handle to the standard mouse cursor that is used when the mouse enters the window rectangle; hbrBackground is a handle to the GDI brush that is used to draw the window's background. The string pointed to by lpszMenuName identifies the menu resource (by name or, through the MAKEINTRESOURCE macro, by an integer identifier) that is used as the standard menu for this class; lpszClassName is the name of the window class. 

The parameters cbClsExtra and cbWndExtra can be used to allocate extra memory for the window class or for individual windows. Applications can use this extra memory to store application-specific information pertaining to the window class or individual windows. 

I left the explanation of the first two parameters for last, and for good reason. Most of what makes a window such a unique and complex entity is controlled through the window class style and the window procedure. 

The parameter lpfnWndProc specifies the address of the window procedure function. This function is responsible for handling any messages the window receives. It can either handle those messages itself, or invoke the default window procedure, DefWindowProc. The messages can be anything: window sizing and moving, mouse events, keyboard events, commands, repaint requests, timer and other hardware-related events, and so on. 

A typical window procedure contains a large switch statement block. Inside, case blocks exist for every message the application is interested in. Messages that the application does not handle are passed to DefWindowProc through the default block. The skeleton of such a window procedure is shown in Listing 9.1. 

Listing 9.1. Window procedure skeleton.
LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_DESTROY:

            PostQuitMessage(0);

            break;

        // Other case blocks come here

        default:

            return DefWindowProc(hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

Certain global characteristics of the window class are controlled through the class style parameter, style. This parameter may be set to a combination of values (using the bitwise OR operator, |). For example, CS_BYTEALIGNCLIENT specifies that the window's client area is always to be positioned on a byte boundary in the screen display's bitmap to enhance graphics performance (a very useful thing to remember when writing performance-intensive applications intended to run on lower-end graphics hardware). The value CS_DBLCLKS specifies that Windows should generate double-click mouse messages when the user double-clicks the mouse within the window. The pair of values CS_HREDRAW and CS_VREDRAW specify that the window be redrawn in its entirety every time its horizontal or vertical size changes. Or the value CS_SAVEBITS specifies that Windows should allocate what UNIX and X programmers often refer to as backing store; a copy of the window bitmap in memory, so that it can automatically redraw the window when parts of it become unobscured. (This should be used with caution; the large amounts of memory required for this may cause a significant performance hit.) 
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NOTE: In 16-bit Windows, it was possible to register an application global class through the style CS_GLOBALCLASS. An application global class was accessible from all other applications and DLLs. This is not true in Win32. In order for an application global class to work as intended, it must be registered from a DLL that is loaded by every application. Such a DLL can be defined through the Registry. 




Creating a Window through CreateWindow 

Registering a new window class is the first step in window creation. Next, applications must actually create a window through the CreateWindow function: 

HWND CreateWindow(

    LPCTSTR  lpClassName,

    LPCTSTR  lpWindowName,

    DWORD  dwStyle,

    int  x,

    int  y,

    int  nWidth,

    int  nHeight,

    HWND  hWndParent,

    HMENU  hMenu,

    HANDLE  hInstance,

    LPVOID  lpParam

);

The first parameter, lpClassName, defines the name of the class that this window inherits its behavior from. The class must either be registered through RegisterClass or be one of the predefined control classes. The predefined classes include the BUTTON, COMBOBOX, EDIT, \, SCROLLBAR, and STATIC classes. There are also some window classes that are mostly used internally by Windows and are referenced only through integer identifiers; these include classes for menus, the desktop window, and icon titles, to name but a few. 

The dwStyle parameter specifies the window's style. This parameter should not be confused with the class style, passed to RegisterClass through the WNDCLASS structure when the new window class is registered. While the class style determines some of the permanent properties of windows belonging to that class, the window style passed to CreateWindow is used to initialize the more transient properties of the window. For example, dwStyle can be used to determine the window's initial appearance (minimized, maximized, visible or hidden). As is the case with the class style, the window style is also typically a combination of values (combined with the bitwise OR operator). In addition to the generic style values that are common to all types of windows, some values are specific to the predefined window classes; for example, the BS_PUSHBUTTON style can be used for windows of the BUTTON class that are to send WM_COMMAND messages to their parents when clicked. 

Some dwStyle values are important enough to deserve a closer look. 

The WS_POPUP and WS_OVERLAPPED styles specify top-level windows. The basic difference is that a WS_OVERLAPPED window always has a caption, while a WS_POPUP window does not need to have one. Overlapped windows are typically used as the main window of applications, while popup windows are used for dialog boxes. 

When a top-level window is created, the calling application sets its owner window through the hwndParent parameter. The parent window of a top-level window is the desktop window. 

Child windows are created with the WS_CHILD style. The major difference between a child window and a top-level window is that a child window is confined to the client area of its parent. 

Windows defines some combinations of styles that are most useful when creating "typical" windows. The WS_OVERLAPPEDWINDOW style setting combines the WS_OVERLAPPED style with the WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles to create a typical top-level application window. The WS_POPUPWINDOW style setting combines WS_POPUP with the WS_BORDER and WS_SYSMENU styles to create a typical dialog box. 

Extended Styles and the CreateWindowEx Function 

The CreateWindowEx function, while otherwise identical to the CreateWindow function, enables you to specify a combination of extended window styles. Extended window styles provide finer control over certain aspects of a window's appearance or the way it functions. 

For example, through the WS_EX_TOPMOST style applications can make a window a topmost window; that is, a top-level window that is not obscured by other top-level windows. A window created with the WS_EX_TRANSPARENT style does not obscure other windows and only receives a WM_PAINT message when all windows under it have been updated. 

Other extended window styles are specific to Windows 95 and versions of Windows NT later than 3.51; for example, Windows NT 3.51 with the beta version of the Windows 95 style shell installed. For example, the WS_EX_TOOLWINDOW style can be used to create a tool window. A tool window is a window with a smaller than usual title bar and other properties that make it useful as a floating toolbar window. 

Yet another set of Windows 95 specific extended styles specifies the window's behavior with respect to the selected shell language. For example, the WS_EX_RIGHT, WS_EX_RTLREADING, and WS_EX_LEFTSCROLLBAR extended styles can be used in conjunction with a right-to-left shell language selection such as Hebrew or Arabic. 

Painting Window Contents 

Painting in a window is performed through the normal set of GDI drawing functions. Applications usually obtain a handle to the display device context through a function such as GetDC, and then call GDI functions such as LineTo, Rectangle, or TextOut. 

But even more typically, window painting occurs in response to a specific message, WM_PAINT. 

The WM_PAINT Message 

The WM_PAINT message is sent to a window when parts of it require redrawing by the application and no other message is pending in the message queue of the thread that owns the window. Applications typically respond to this with a set of drawing instructions enclosed between calls to the BeginPaint and EndPaint functions. 

The BeginPaint function retrieves a set of parameters that are stored in a PAINTSTRUCT structure: 

typedef struct tagPAINTSTRUCT {

    HDC  hdc;

    BOOL fErase;

    RECT rcPaint;

    BOOL fRestore;

    BOOL fIncUpdate;

    BYTE rgbReserved[32];

} PAINTSTRUCT;

BeginPaint also takes care of erasing the background, if necessary, by sending the application a WM_ERASEBKGND message. 
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NOTE: The BeginPaint function should only be called in response to a WM_PAINT message. Each call to BeginPaint must be accompanied by a subsequent call to the EndPaint function. 




Applications can use the hDC member of the structure to draw into the client area of the window. The rcPaint member represents the smallest rectangle that encloses all areas of the window that require updating. By limiting their activities to this rectangular region, applications can speed up the painting process. 

Repainting a Window by Invalidating Its Contents 

The functions InvalidateRect and InvalidateRgn can be used to invalidate all or parts of a window. Windows sends a WM_PAINT message to a window if its update region, that is, the union of all update regions specified in prior calls to InvalidateRect and InvalidateRgn, is not empty and the thread that owns the window has no more messages in its message queue. 

This behavior suggests a very efficient mechanism for applications that need to update parts of their window. Instead of updating the window immediately, they can schedule the update by invalidating the appropriate region. When they process WM_PAINT messages, they can examine the update region (the rcPaint member of the PAINTSTRUCT structure) and update only those elements in the window that fall into this region. Alternatively (or in addition to this), applications can maintain private variables in which they store hints; that is, information that assists the window updating procedure in determining the most efficient way of updating the window. 

The use of such hints to assist in efficiently updating a window is present throughout the Microsoft Foundation Classes. 

Window Management Messages 

A typical window responds to many other messages in addition to WM_PAINT messages. Some of the more frequently processed messages are reviewed in this section. 

WM_CREATE. The first message that the window procedure of a newly created window receives is the WM_CREATE message. This message is sent before the window is made visible and before the CreateWindow or CreateWindowEx function returns. 

In response to this message, applications can perform initialization functions that are necessary before the window is made visible. 

WM_DESTROY. The WM_DESTROY message is sent to the window procedure of a window that has already been removed from the screen and is about to be destroyed. 

WM_CLOSE. The WM_CLOSE message is sent to a window indicating that the window should be closed. The default implementation in DefWindowProc calls DestroyWindow when this message is received. Applications can, for example, display a confirmation dialog and call DestroyWindow only if the user confirms closing the window. 

WM_QUIT. The WM_QUIT message is usually the last message an application's main window receives. Receiving this message causes GetMessage to return zero, which terminates the message loop of most applications. 

This message indicates a request to terminate the application. It is generated in response to a call to PostQuitMessage. 

WM_QUERYENDSESSION. The WM_QUERYENDSESSION notifies the application that the Windows session is about to be ended. An application may return FALSE in response to this message to prevent the shutdown of Windows. After processing the WM_QUERYENDSESSION message, Windows sends all applications a WM_ENDSESSION message with the results of the WM_QUERYENDSESSION processing. 

WM_ENDSESSION. The WM_ENDSESSION message is sent to applications after the WM_QUERYENDSESSION message has been processed. It indicates whether Windows is about to shut down or whether the shutdown has been aborted. 

If an imminent shutdown is indicated, the Windows session may end at any time after the WM_ENDSESSION message has been processed by all applications. It is important, therefore, that applications perform all tasks pertaining to safe termination. 

WM_ACTIVATE. The WM_ACTIVATE message indicates when a top-level window is about to be activated or deactivated. The message is first sent to the window that is about to be deactivated, then to the window that is about to be activated. 

WM_SHOWWINDOW. The WM_SHOWWINDOW message indicates when a window is about to be hidden or shown. A window can be hidden as a result of a call to the ShowWindow function, or as a result of another window being maximized. 

WM_ENABLE. The WM_ENABLE message is sent to a window when it is enabled or disabled. A window can be enabled or disabled through a call to the EnableWindow function. A window that is disabled cannot receive mouse or keyboard input. 

WM_MOVE. The WM_MOVE message indicates that the window's position has been changed. 

WM_SIZE. The WM_SIZE message indicates that the window's size has been changed. 

WM_SETFOCUS. The WM_SETFOCUS message indicates that the window has gained keyboard focus. An application may, for example, display the caret in response to this message. 

WM_KILLFOCUS. The WM_KILLFOCUS message indicates that the window is about to lose keyboard focus. If the application displays a caret, the caret should be destroyed in response to this message. 

WM_GETTEXT. The WM_GETTEXT message is sent to a window requesting that the window text be copied to a buffer. For most windows, the window text is the window title. For controls like buttons, edit controls, static controls, or combo boxes, the window text is the text displayed in the control. This message is usually handled by the DefWindowProc function. 

WM_SETTEXT. The WM_SETTEXT message requests that the window text be set to the contents of a buffer. The DefWindowProc function sets the window text and displays it in response to this message. 

Several messages concern the nonclient area of a window; that is, its title bar, border, menu, and other areas that are typically not updated by the application program. An application can intercept these messages to create a window frame with a customized appearance or behavior. 

WM_NCPAINT. The WM_NCPAINT message indicates that the nonclient area of a window (the window frame) needs to be repainted. The DefWindowProc function handles this message by repainting the window frame. 

WM_NCCREATE. Before the WM_CREATE message is sent to a window, it also receives a WM_NCCREATE message. Applications may intercept this message to perform initializations specific to the nonclient area of the window. 

WM_NCDESTROY. The WM_NCDESTROY message indicates that a window's nonclient area is about to be destroyed. This message is sent to a window after the WM_DESTROY message. 

WM_NCACTIVATE. The WM_NCACTIVATE message is sent to a window to indicate that its nonclient area has been activated or deactivated. The DefWindowProc function changes the color of the window title bar to indicate an active or inactive state in response to this message. 

Window Classes 

Every window is associated with a window class. A window class is either a class provided by Windows, or a user-defined window class registered through the RegisterClass function. 

The Window Procedure 

The purpose of a window class is to define the characteristics and behavior of a set of related windows. Perhaps the most notable, but by far not the only property of a window class, is the window procedure. 

I have already demonstrated a simple skeleton for a window procedure earlier in Listing 9.1. 

The window procedure is called every time a message is sent to the window through the SendMessage function, and every time a posted message is dispatched through the DispatchMessage function. The role of the window procedure is to process messages sent or posted to that window. In doing so, it can rely on the default window procedure (DefWindowProc, or in the case of dialog boxes, DefDlgProc) for the processing of unwanted messages. 

It is through the window procedure that the behavior of a window is implemented. By responding to various messages, the window procedure determines how the window reacts to mouse and cursor events and how its appearance changes in reaction to those events. For example, in the case of a button, the window procedure may respond to WM_LBUTTONDOWN messages by repainting the window indicating that the button is pressed. Or in the case of an edit control, the window procedure may respond to a WM_SETFOCUS message by displaying the caret. 

Windows supplies two default window procedures: DefWindowProc and DefDlgProc. The DefWindowProc function implements the default behavior for typical top-level windows. It processes nonclient area messages and manages the window frame. It also implements some other aspects of top-level window behavior, such as responding to keyboard events; for example, responding to the Alt key by highlighting the first item in the window's menu bar. 

The DefDlgProc function is for the use of dialog boxes. In addition to the default top-level window behavior, it also manages the focus within a dialog box. It implements the behavior of dialogs whereby the focus jumps from one dialog control to the next when the user presses the Tab key. 

In addition to the default window procedures, Windows also supplies a set of window classes. These implement the behavior of dialog box controls, such as buttons, edit fields, list and combo boxes, and static text fields. The name for these classes is system global class, which is a leftover from the days of 16-bit Windows. In Win32 these classes are no longer global. That is, a change that affects a system global class will only affect windows of that class within the same application and have no effect on windows in another application because Win32 applications run in separate address spaces, and thus they are shielded from one another. 

Whether it is a Windows-supplied class, or a class defined by the application, an application can use an existing window class from which to derive a new class and implement new or modified behavior. The mechanisms for accomplishing this are called subclassing and superclassing. 
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WARNING: An application should not attempt to subclass or superclass a window that belongs to another process. 




Subclassing 

Subclassing means substituting the window procedure for a window class with another. This is accomplished by calling the SetWindowLong or SetClassLong function. 

Calling SetWindowLong with the GWL_WNDPROC index value substitutes the window procedure for a specific window. In contrast, calling SetClassLong with the GCL_WNDPROC index value substitutes the window procedure for all windows of that class that are created after the call to SetClassLong. 

Consider the simple example shown in Listing 9.2. (You can compile this code from the command line by typing cl subclass.c user32.lib.) This example displays the "Hello, World!" message. In a somewhat unorthodox fashion, it uses the BUTTON system class for this purpose. However, it subclasses the BUTTON class by providing a replacement window procedure. This replacement procedure implements special behavior when a WM_LBUTTONUP message is received; it destroys the window, effectively ending the application. To ensure proper termination, the WM_DESTROY message also receives special handling: a WM_QUIT message is posted through a call to PostQuitMessage. 

Listing 9.2. Subclassing the BUTTON class.
#include <windows.h>

WNDPROC OldWndProc;

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_LBUTTONUP:

            DestroyWindow(hwnd);

            break;

        case WM_DESTROY:

            PostQuitMessage(0);

            break;

        default:

            return CallWindowProc(OldWndProc,

                                  hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE d2,

                                        LPSTR d3, int d4)

{

    MSG msg;

    HWND hwnd;

    hwnd = CreateWindow("BUTTON", "Hello, World!",

                        WS_VISIBLE | BS_CENTER, 100, 100, 100, 80,

                        NULL, NULL, hInstance, NULL);

    OldWndProc =

        (WNDPROC)SetWindowLong(hwnd, GWL_WNDPROC, (LONG)WndProc);

    while (GetMessage(&msg, NULL, 0, 0))

        DispatchMessage(&msg);

    return msg.wParam;

}

I would like to call your attention to the mechanism used in the new window procedure, WndProc, to reference the old window procedure for the default processing of messages. The old procedure is called through the Win32 function CallWindowProc. In 16-bit Windows, it was possible to call the address obtained by the call to SetWindowLong directly; this was always the address of the old window procedure. In Win32, this is not necessarily so; the value may instead be a handle to the window procedure. 

In this example, I performed the subclassing through SetWindowLong, meaning that it only affected the single button window for which SetWindowLong was called. If I had called SetClassLong instead, I would have altered the behavior of all buttons created subsequently. Consider the example program in Listing 9.3 (to compile this program from the command line, type cl subclass.c user32.lib). 

Listing 9.3. Subclassing the BUTTON class.
#include <windows.h>

WNDPROC OldWndProc;

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_LBUTTONDOWN:

            MessageBeep(0xFFFFFFFF);

        default:

            return CallWindowProc(OldWndProc,

                                  hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance,

                   HINSTANCE d2, LPSTR d3, int d4)

{

    HWND hwnd;

    hwnd = CreateWindow("BUTTON", "",

                        0, 0, 0, 0, 0,

                        NULL, NULL, hInstance, NULL);

    OldWndProc =

        (WNDPROC)SetClassLong(hwnd, GCL_WNDPROC, (LONG)WndProc);

    DestroyWindow(hwnd);

    MessageBox(NULL, "Hello, World!", "", MB_OK);

}

This example creates a button control but never makes it visible; the sole purpose of this control's existence is so that through its handle, the class behavior can be modified. Immediately after the call to SetClassLong, the button control is actually destroyed. 

But the effects of SetClassLong linger on! The subsequently displayed message box contains an OK button; and the behavior of this button (namely that when it is clicked by the left mouse button, the PC speaker emits a short beep) reflects the new window procedure. Similarly, if the program displayed other dialogs or message boxes, indeed anything that had button controls in it, all the newly created buttons would exhibit the modified behavior. 

Global Subclassing 

In 16-bit Windows, a subclassing mechanism similar to that presented in the previous section was often used to change the system-wide behavior of certain types of windows such as dialog controls. (This is how the 3-D control library CTL3D.DLL was implemented.) Subclassing the window class affected all newly created windows of that class, regardless of the application that created them. Unfortunately, in Win32 this is no longer the case; only windows of the same application are affected by such a change. 

So how can developers influence the global behavior of certain types of windows? The answer is, you have to use a DLL and ensure that it is loaded into every application's address space. 

Under Windows NT, this can be accomplished easily by creating a setting in the registry. The following registry value needs to be modified: 

\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\APPINIT_DLLS

DLLs that are listed under this registry key are loaded into the address space of every newly created process. If you wish to add several DLLs, separate the pathnames by spaces. 

Listing 9.4 shows a DLL that subclasses the BUTTON class just like the example shown in Listing 9.3. If you add the full pathname of this DLL to the above-mentioned registry key, every time a button control is clicked, a short beep will be heard. 

Listing 9.4. Subclassing in a DLL.
#include <windows.h>

WNDPROC OldWndProc;

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_LBUTTONDOWN:

            MessageBeep(0xFFFFFFFF);

        default:

            return CallWindowProc(OldWndProc,

                                  hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

BOOL WINAPI DllMain (HANDLE hModule, DWORD dwReason,

                     LPVOID lpReserved)

{

    HWND hwnd;

    switch(dwReason)

    {

        case DLL_PROCESS_ATTACH:

            hwnd = CreateWindow("BUTTON", "",

                                0, 0, 0, 0, 0,

                                NULL, NULL, hModule, NULL);

            OldWndProc = (WNDPROC)SetClassLong(hwnd, GCL_WNDPROC,

                                               (LONG)WndProc);

            DestroyWindow(hwnd);

    }

    return TRUE;

}

To compile this DLL from the command line, use cl /LD beepbtn.c user32.lib. The /LD command line flag instructs the compiler to create a DLL instead of an executable file. 
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WARNING: Be careful to only add a fully tested DLL to the Registry. A faulty DLL may render your system unstable or may prevent it from starting altogether. If that happens, a quick-and-dirty remedy is to boot into MS-DOS and rename the DLL file to prevent it from being loaded. Obviously, if your DLL file sits on an NTFS partition, this may not be so easy to do. 




Adding your DLL's pathname to the APPINIT_DLLS Registry key is perhaps the simplest, but certainly not the only technique to inject your DLL's code into another application's address space. This technique also has some drawbacks, not the least of which is the fact that it does not work under Windows 95. (You may find information to the contrary on the Microsoft Developer Library. I tried the technique and it does not work; when I asked Microsoft's product support, they confirmed that this registry setting is not supported under Windows 95.) 

Another drawback of this technique includes the fact that a DLL specified this way is loaded into the address space of every application¡ªor, to be more precise, every GUI application that links with USER32.DLL. Even the slightest bug in your DLL may seriously affect the stability of the entire system. 

Fortunately, there are other techniques available that enable you to inject your DLL into the address space of another process. 

The first such technique requires the use of a Windows hook function. By using the SetWindowsHookEx function, it is possible to install a hook function into the another application's address space. Through this mechanism, you can add a new window function to a window class owned by another application. 

The second technique relies on the CreateRemoteThread function and its ability to create a thread that runs in the context of another process. 

Superclassing 

Superclassing means creating a new class based on the behavior of an existing class. An application that wishes to superclass an existing class can use the GetClassInfo function to obtain a WNDCLASS structure describing that class. After this structure has been suitably modified, it can be used in a call to the RegisterClass function that registers the new class for use. 

The example shown in Listing 9.5 demonstrates the technique of superclassing. In this example, a new window class, BEEPBUTTON, is created, its behavior based on the default BUTTON class. This new class is then used to display a simple message. To compile this program from the command line, type cl supercls.c user32.lib. 

Listing 9.5. Superclassing the BUTTON class.
#include <windows.h>

WNDPROC OldWndProc;

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_LBUTTONDOWN:

            MessageBeep(0xFFFFFFFF);

        default:

            return CallWindowProc(OldWndProc,

                                  hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE d2,

                                        LPSTR d3, int d4)

{

    MSG msg;

    HWND hwnd;

    WNDCLASS wndClass;

    GetClassInfo(hInstance, "BUTTON", &wndClass);

    wndClass.hInstance = hInstance;

    wndClass.lpszClassName = "BEEPBUTTON";

    OldWndProc = wndClass.lpfnWndProc;

    wndClass.lpfnWndProc = WndProc;

    RegisterClass(&wndClass);

    hwnd = CreateWindow("BEEPBUTTON", "Hello, World!",

                        WS_VISIBLE | BS_CENTER, 100, 100, 100, 80,

                        NULL, NULL, hInstance, NULL);

    while (GetMessage(&msg, NULL, 0, 0))

    {

        if (msg.message == WM_LBUTTONUP)

        {

            DestroyWindow(hwnd);

            PostQuitMessage(0);

        }

        DispatchMessage(&msg);

    }

    return msg.wParam;

}

We have looked at the difference between the two techniques, subclassing and superclassing, in terms of their implementation. But what is the difference between them in terms of their utility? In other words, when would you use subclassing, and when would you use superclassing? 

The difference is simple. Subclassing modifies the behavior of an existing class; superclassing creates a new class based on the behavior of an existing class. In other words, if you use subclassing, you implicitly alter the behavior of every feature in your application that relies on the class that you subclass. In contrast, superclassing only affects windows that are based explicitly on the new class; windows based on the original class are not be affected. 

Dialog Boxes 

In addition to its main application window with its title and menu bar and application-defined contents, an application most commonly uses dialogs to exchange information with the user. Typically, the application's main window exists throughout the life of the application, while its dialogs are more transient in nature, popping up only for the duration of a brief exchange of data; but this is not the key distinguishing characteristics of a main window and a dialog. Indeed, there are applications that use a dialog box as their main window; in other applications, a dialog may remain visible for most of the application's lifetime. 

A dialog box usually contains a set of dialog controls, themselves child windows, through which the user and the application exchange data. There are several Win32 functions that assist in constructing, displaying, and managing the contents of a dialog box. Applications developers usually need not be concerned about painting a dialog's controls or handling user-interface events; instead, they can focus on the actual exchange of data between the dialog's controls and the application. 

Dialogs represent a versatile capability in Windows. To facilitate their efficient use, Windows provides two types of dialog boxes: modeless and modal. 

Modal Dialogs 

When an application displays a modal dialog box, the window that owns the dialog box is disabled, effectively suspending the application. The user must complete interaction with the modal dialog before the application can continue. 

A modal dialog is usually created and activated through the DialogBox function. This function creates the dialog window from a dialog template resource and displays the dialog as a modal dialog. The application that calls the DialogBox function supplies the address of a callback function; DialogBox does not return until the dialog box is dismissed through a call to EndDialog made from this callback function (possibly in response to a user-interface event, such as a click on the OK button). 

Although it is possible to create a modal dialog with no owner, it is not usually recommended. If such a dialog box is used, several issues must be taken into account. As the application's main window is not disabled, steps must be taken to ensure that messages sent or posted to it continue to be processed. Windows does not destroy or hide an ownerless dialog when other windows of the application are destroyed. 

Modeless Dialogs 

In contrast to modal dialogs, presenting a modeless dialog does not suspend execution of the application by disabling the owner window of the dialog box. However, modeless dialogs remain on top of their owner window even when the owner window gains focus. Modeless dialogs represent an effective way of continuously displaying relevant information to the user. 

A modeless dialog is typically created through the CreateDialog function. As there is no equivalent of the DialogBox function for modeless dialogs, applications are responsible for retrieving and dispatching messages for the modeless dialog. Most applications do this in their main message loop; however, to ensure that the dialog responds to keyboard events as expected and enables the user to move between controls using keyboard shortcuts, the application must call the IsDialogMessage function. 

A modeless dialog does not return a value to its owner. However, the modeless dialog and its owner can communicate using SendMessage calls. 

The dialog box procedure for a modeless dialog must not call the EndDialog function. The dialog is normally destroyed by a call to DestroyWindow. This function can be called in response to a user-interface event from the dialog box procedure. 

Applications are responsible for destroying all modeless dialog boxes before terminating. 

Message Boxes 

Message boxes are special dialogs that display a user-defined message, a title, and a combination of predefined buttons and icons. Their intended use is to display brief informational messages to the user and present the user with a limited set of choices. For example, message boxes can be used to notify the user of an error condition and request instructions whether to retry or cancel the operation. 

A message box is created and displayed through the MessageBox function. The application that calls this function specifies the text string that is to be displayed and a set of flags indicating the type and appearance of the message box. 

In addition to the default application modal behavior of a message box, application can specify two other modes of behavior: task modal and system modal. Use a task modal message box if you wish to disable interaction with all top-level windows of the application, not just the owner window of the message box. A system modal message box should be used in extreme cases, warning the user of a potential disaster that requires immediate attention. System modal message boxes disable interaction with all other applications until the user deals with the message box. 
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NOTE: System modal message boxes should be used very carefully. Few things are more annoying than a misbehaving application that displays a system modal message box repeatedly in a loop (perhaps due to a programming error), effectively rendering the entire system useless. 




Dialog Templates 

Although it is possible to create a dialog in memory, most applications rely on a dialog template resource to determine the type and appearance of controls within a dialog. 

Dialog templates are typically created as part of the application's resource file. They can be created manually as a set of instructions in the resource file, or they can be created through a visual resource file editor, such as the resource editor of the Developer Studio. 

The dialog template defines the style, position, and size of the dialog and lists all controls within it. The style, position, and appearance of controls are also defined as part of the dialog template. The various dialog box functions draw the entire dialog based on the dialog template, except for controls that are marked as owner-drawn. 

The Dialog Box Procedure 

Dialog box procedure is just another name for the window procedure of a dialog box. There is no fundamental difference between a dialog box procedure and a window procedure, except perhaps the fact that a dialog procedure relies on DefDlgProc, rather than DefWindowProc, for default processing of messages. 

A typical dialog box procedure responds to WM_INITDIALOG and WM_COMMAND messages but little else. In response to WM_INITDIALOG, the dialog box procedure initializes the controls in the dialog. Windows does not send a WM_CREATE message to a dialog box procedure; instead, the WM_INITDIALOG message is sent, but only after all the controls within the dialog have been created, just before the dialog is displayed. This enables the dialog box procedure to properly initialize controls before they are seen by the user. 

Most controls send WM_COMMAND messages to their owner window (that is, the dialog box itself). To carry out the function represented by a control, the dialog box procedure responds to WM_COMMAND messages by identifying the control and performing the appropriate action. 

Common Dialogs 

Win32 implements a series of commonly used dialogs, freeing the programmer from the need to implement these for every application. These common dialogs are well known to every Windows user. They include dialogs for opening and saving files, selecting a color or a font, printing and setting up the printer, selecting a page size, and searching and replacing text. 

Common dialogs can be used in two ways. Applications can utilize the common dialog "as is" by calling one of the common dialog functions that are part of the Win32 API. Alternatively, applications can customize common dialogs by implementing a special hook function and supplying a custom dialog template. 

Windows 95 has introduced several changes to the common dialogs that were known to Windows 3.1 and Windows NT programmers. However, most of these changes are cosmetic, and do not affect typical usage of the dialogs. Where the differences are significant, I mention them in the appropriate following sections. 
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NOTE: The appearance of all common dialog boxes has changed substantially in Windows 95. Applications that supply their own dialog templates must take this fact into account in order to present a visual appearance that is consistent with the rest of the operating system. 




When a common dialog function encounters an error, the CommDlgExtendedError function can often be used to obtain additional information about the cause and nature of the problem. 

The Open and Save As Dialogs 

The File Open and File Save As dialogs are perhaps the most often seen common dialogs. The purpose of these dialogs is to enable the user to browse the file system and select a file to be opened for reading or writing. 

The File Open dialog is displayed when the application calls the GetOpenFileName function. The function's single parameter is a pointer to an OPENFILENAME structure. Members of this structure provide initialization values for the dialog box, and, optionally, the address of a hook function and the name of a custom dialog template, which are used for customizing the dialog. When the dialog is dismissed, applications can obtain the user's selection from this structure. A typical File Open dialog is shown in Figure 9.2. 


Figure 9.2. The File Open dialog (Explorer-style). 

The File Save As dialog is displayed in response to a call to GetSaveFileName. This function also takes a pointer to an OPENFILENAME structure as its single parameter. An example for the File Save As dialog is shown in Figure 9.3. 


Figure 9.3. The File Save As dialog (Explorer-style). 

For those familiar with the Windows 3.1 look of the common file dialogs, the difference between that and the new Windows 95 look is striking. Applications that wish to use the new look (and take advantage of the new Explorer-related functionality) must specify the style OFN_EXPLORER in the Flags member of the OPENFILENAME structure. 

The Windows 95 versions of the common file dialogs have another new feature. When a file dialog is customized, it is no longer necessary to reproduce the entire dialog template before adding your modifications. Instead, it is possible to create a dialog template containing only the controls you wish to add to the dialog and an optional special field, labeled with the ID stc32, indicating where the standard components of the dialog should be placed. 

The Choose Color Dialog 

The Choose Color dialog box is used when the user is requested to select a color. The dialog can be used to select a color from the system palette, or to specify a custom color. 

The Choose Color dialog, shown in Figure 9.4, is presented in response to a call to the ChooseColor function. Applications can control the initialization values of this dialog through the pointer to a CHOOSECOLOR structure, passed to the ChooseColor function as its single parameter. Through this structure, applications can also customize the dialog's behavior by supplying a hook function and the name of a custom dialog template. When the dialog is dismissed, the new color selection is available as the rgbResult member of the CHOOSECOLOR structure. 


Figure 9.4. The Choose Color dialog. 

The Font Selection Dialog 

Another of the more frequently seen common dialogs is the font selection dialog. Through this dialog, the user can select a typeface, a font style, font size, special effects, text color, and, in the case of Windows 95, a script. The font selection dialog is shown in Figure 9.5. 


Figure 9.5. The Font Selection dialog. 

The font selection dialog is initialized through the CHOOSEFONT structure. This structure can also be used to specify a custom hook function and the name of a custom dialog template. The lpLogFont member of this structure points to a LOGFONT structure that can be used to initialize the dialog and receives information about the newly selected font when the dialog is dismissed. This structure can be used in a call to the GDI function CreateFontIndirect to actually create the font for use. 

Dialogs for Printing and Print Setup 

In the Windows 3.1 version of the Print dialog box, the user selects printing parameters and starts the printing process. The user selects and configures the printer from a separate dialog, the Print Setup dialog. 

Under Windows 95, these dialogs look and behave differently. The Print dialog (Figure 9.6) combines the functionality of the Windows 3.1 Print and Print Setup dialogs. Selection of the paper source and paper type, previously a function of the Print Setup dialog, is now available as part of a new dialog, the Page Setup dialog (Figure 9.7). 


Figure 9.6. The Print dialog. 

To use the Print dialog, applications must first prepare the contents of a PRINTDLG structure, then call the PrintDlg function with a pointer to this structure as the function's only parameter. 


Figure 9.7. The Page Setup dialog. 

The Page Setup dialog is displayed when applications call the PageSetupDlg function. The function's only parameter is a pointer to a PAGESETUPDLG structure. Through this structure, applications can control the fields of the dialog and possibly specify customization. When the dialog is dismissed, the user's selections are available in this structure. 

Text Find and Replace Dialogs 

The Find and Find and Replace dialogs present an interface where the user can enter a text search string and, optionally, a replacement string. These dialogs differ fundamentally from the other common dialogs in that they are modeless dialogs; the other common dialogs all operate as modal dialogs. Therefore, the application that creates them is responsible for providing the message loop and dispatching dialog messages through the IsDialogMessage function. 

The Find dialog, shown in Figure 9.8, is displayed in response to a call to the FindText function. The function returns a dialog handle that can be used in the application's message loop in a call to IsDialogMessage. The dialog is initialized through a FINDREPLACE structure, which also receives any values the user may enter in the dialog. 

The dialog communicates with its owner window through a series of messages. Before calling FindText, applications should register the message string "FINDMSGSTRING" through a call to the RegisterWindowMessage function. The Find dialog will send this message to the application whenever the user enters a new search value. 


Figure 9.8. The Find Text dialog. 

The Replace dialog (Figure 9.9) is a close cousin to the Find dialog and is initialized through an identical FINDREPLACE structure. This dialog is displayed in response to a call to the ReplaceText function. 


Figure 9.9. The Replace dialog. 

When the application receives a message from a Find or Replace dialog, it can check the Flags member of the FINDREPLACE structure to determine what action was requested by the user. 
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NOTE: The Find and Replace dialogs are not destroyed when the FindText or ReplaceText functions return. For this reason, an application would normally allocate the FINDREPLACE structure in global memory. If memory allocated for the FINDREPLACE structure is deallocated before the Find or Replace dialogs are destroyed, the application will fail. 




Common Dialogs Example 

The example program shown in Listing 9.6 creates and displays each of the common dialogs in sequence. This example has little practical value; it simply demonstrates, with a minimum amount of code, how these dialogs can be created and displayed. This sample can be compiled from the command line with cl commdlgs.c comdlg32.lib user32.lib. 

Listing 9.6. Common dialogs.
#include <windows.h>

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_DESTROY:

            PostQuitMessage(0);

            break;

        default:

            return DefWindowProc(hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

                                        LPSTR d3, int nCmdShow)

{

    MSG msg;

    HWND hwnd;

    WNDCLASS wndClass;

    OPENFILENAME ofn;

    CHOOSECOLOR cc;

    CHOOSEFONT cf;

    PRINTDLG pd;

    PAGESETUPDLG psd;

    FINDREPLACE fr;

    COLORREF crCustColors[16];

    LOGFONT lf;

    char szFindWhat[80];

    char szReplaceWith[80];

    HWND hdlgFt, hdlgFr;

    if (hPrevInstance == NULL)

    {

        memset(&wndClass, 0, sizeof(wndClass));

        wndClass.style = CS_HREDRAW | CS_VREDRAW;

        wndClass.lpfnWndProc = WndProc;

        wndClass.hInstance = hInstance;

        wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);

        wndClass.hbrBackground = (HBRUSH)(COLOR_APPWORKSPACE + 1);

        wndClass.lpszClassName = "COMMDLGS";

        if (!RegisterClass(&wndClass)) return FALSE;

    }

    hwnd = CreateWindow("COMMDLGS", "Common Dialogs Demonstration",

                        WS_OVERLAPPEDWINDOW,

                        CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,

                        NULL, NULL, hInstance, NULL);

    ShowWindow(hwnd, nCmdShow);

    UpdateWindow(hwnd);

    memset(&ofn, 0, sizeof(ofn));

    ofn.lStructSize = sizeof(OPENFILENAME);

    GetOpenFileName(&ofn);

    memset(&ofn, 0, sizeof(ofn));

    ofn.lStructSize = sizeof(OPENFILENAME);

    GetSaveFileName(&ofn);

    memset(&cc, 0, sizeof(cc));

    memset(crCustColors, 0, sizeof(crCustColors));

    cc.lStructSize = sizeof(cc);

    cc.lpCustColors = crCustColors;

    ChooseColor(&cc);

    memset(&cf, 0, sizeof(cf));

    memset(&lf, 0, sizeof(lf));

    cf.lStructSize = sizeof(cf);

    cf.lpLogFont = &lf;

    cf.Flags = CF_SCREENFONTS | CF_EFFECTS;

    ChooseFont(&cf);

    memset(&pd, 0, sizeof(pd));

    pd.lStructSize = sizeof(pd);

    PrintDlg(&pd);

    memset(&psd, 0, sizeof(psd));

    psd.lStructSize = sizeof(psd);

    PageSetupDlg(&psd);

    memset(&fr, 0, sizeof(fr));

    memset(szFindWhat, 0, sizeof(szFindWhat));

    memset(szReplaceWith, 0, sizeof(szReplaceWith));

    fr.lStructSize = sizeof(fr);

    fr.hwndOwner = hwnd;

    fr.lpstrFindWhat = szFindWhat;

    fr.lpstrReplaceWith = szReplaceWith;

    fr.wFindWhatLen = sizeof(szFindWhat);

    fr.wReplaceWithLen = sizeof(szReplaceWith);

    hdlgFt = FindText(&fr);

    hdlgFr = ReplaceText(&fr);

    while (GetMessage(&msg, NULL, 0, 0))

        if(!IsDialogMessage(hdlgFt, &msg))

            if(!IsDialogMessage(hdlgFr, &msg))

                DispatchMessage(&msg);

    return msg.wParam;

}

OLE Common Dialogs 

As part of the OLE 2 implementation, the system provides common dialogs for the following set of functions: Insert Object, Paste Special, Change Source, Edit Links, Update Links, Object Properties, Convert, and Change Icon. Most applications do not invoke these dialogs directly, but use the Microsoft Foundation Classes (and, in particular, the wrapper classes for these dialogs) to implement OLE functionality. 

Controls 

A control is a special window that typically enables the user to perform a simple function and sends messages to this effect to its owner window. For example, a pushbutton control has one simple function, namely that the user can click on it; when that happens, the pushbutton sends a WM_COMMAND message to the window (typically a dialog) that owns it. 

Windows offers several built-in control classes for the most commonly used controls. A dialog with a sample collection of these controls is shown in Figure 9.10. 


Figure 9.10. A collection of standard controls. 

Windows 95 introduced a set of new control classes, collectively referred to as Windows 95 Common Controls. This name is slightly misleading as the new control classes are now also available in Windows NT 3.51 and Win32s 1.3. 

Applications can also create their own controls. These can be derived from the standard control classes, or they can be built independently. 

The control class and the control style (which defines variations of behavior within a button class) are usually both defined in an application's resource file. Alternatively, applications that create controls programmatically select the button class and specify the button style as parameters to the CreateWindow function. 

Static Controls 

Static controls are perhaps the simplest of all control types. The sole purpose of their existence is to display a piece of text, such as a label for another control. Static controls do not respond to user-interface events and do not send messages to their owner window. 

Buttons 

Buttons, as their name implies, are controls that respond to simple mouse clicks. There are several button types. A pushbutton is a button that posts a WM_COMMAND message to its owner window when it is clicked. A check box indicates one of two states, selected and not selected. A variant of the check box, the three-state check box, adds a third, disabled state to the other two. A radio button is a control that is typically used in groups, indicating a set of mutually exclusive choices. 

There are variants to these control styles that define secondary aspects of their behavior. 

Edit Controls 

An edit control is a rectangular area where the user can enter unformatted text. The text can be a few characters¡ªsuch as the name of a file¡ªor an entire text file; for example, the client area of the Windows Notepad application is one large edit control. Applications typically communicate with the edit control through a series of messages that are used to set or retrieve text from the control. 

List Boxes 

A list box contains a collection of values arranged in rows. Users can use the mouse cursor to select the desired value from the list. If the list box contains more values than can be displayed at ones, a vertical scrollbar is also displayed as part of the list box. 

Combo Boxes 

A combo box combines the functionality of a list box and an edit control. Users can enter a value in the edit control part of the combo box. Alternatively, they can click the down arrow next to the edit control to display the list box part, where a value can be selected. 

Scrollbars 

A scrollbar control consists of a rectangular area with two arrows at the end and a sliding pointer. A scrollbar can be vertical or horizontal. Scrollbars are typically used to indicate the position of the visible portion within a larger area. Applications also used scrollbars to implement the functionality of a slide control; however, as one of the new Windows 95 common controls is a slider control, using scrollbars for this purpose is no longer necessary. 

Windows 95 Common Controls 

Windows 95 defines a new set of common controls. 

Tab controls help in implementing multipage dialogs, also known as tabbed dialogs or property sheets. A tab control provides a user-interface where the user can select the dialog page (property page) by clicking on a little tab. The tab gives the visual appearance of several sheets organized on top of each other and clicking on the tab gives the visual impression of bringing the selected sheet to front. 

Tree controls present a list of items in a hierarchical organization. Tree controls are ideal for displaying hierarchical lists, such as a list of directories on disk. Tree controls provide an efficient mechanism for displaying a large number of items by providing the ability to expand and collapse higher-level items. 

List controls expand the functionality of a list box by providing a means to display a list of items in one of several formats. In a typical list control, items have an icon and some text; the control can display these items in a variety of formats as icons, or as list items arranged in rows. 

A slider control provides the functionality similar to the sliding volume control on many stereo systems. The user can position the sliding tab with the mouse to set a specific position in the slider control. Slider controls are ideal in multimedia applications as volume or picture controls, or controls through which the user can set the position during playback of a multimedia data source. 

Progress bars are used to indicate the progress of a lengthy process. Progress bars do not accept user input; they are used for informational purposes only. 

Spin buttons are used to increment or decrement the value of an associated control, usually an edit control. 

The rich-text edit control expands the functionality of the Windows 3.1 edit control by enabling the editing of Microsoft RTF (Rich Text Format) files. Rich-text controls encapsulate the capability of a reasonably sophisticated word processor. 

A hot key control accepts a keystroke combination from the user, which the application can use to set up a hot key through the WM_SETHOTKEY message. 

Other Windows 95 common controls include the animation control, header control, status bar, toolbar control, and tooltip control. All Windows 95 common controls are also supported in Windows NT beginning with Version 3.51. 

Figure 9.11 presents a collection of Windows 95 common controls in a dialog. 


Figure 9.11. Some Windows 95 common controls. 

Summary 

A window is a rectangular area on the screen through which applications and the user communicate. Applications draw into the window to display information for the user. Applications receive messages on user-interface events through a handle to the window. 

Windows are arranged hierarchically. At top is the desktop window. Top-level windows are those whose parent is the desktop window¡ªor those that have no parent window. Child windows are those whose parent is a top-level window or another child window. Windows sharing the same parent are siblings; the order in which sibling windows are displayed is called the Z-order. A special category of windows contains top-level windows that have the topmost attribute; these windows always precede non-topmost windows in the Z-order, even when a non-topmost window is the active window. 

A top-level window may have an owner window that is different from its parent window. 

Typical windows that users normally interact with include overlapped windows (normal application windows); popup windows (dialog boxes); and controls. 

Window messages are handled in the window procedure. A window procedure and other window attributes are associated with the window class from which windows are derived. In addition to the capability of defining their own window classes, applications can also superclass and subclass existing window classes. Subclassing means modifying the behavior of an existing window class; superclassing means creating a new window class based on the behavior of an existing class. 

Part of the Win32 API is a set of functions that assist in creating, displaying, and managing dialogs. Windows distinguishes between modal dialogs and modeless dialogs. A modal dialog disables its owner window while it is displayed and does not return control to the application until the user dismisses the dialog. In contrast, modeless dialogs are displayed without disabling their owner window. Applications must provide message loop functionality and dispatch dialog messages through the IsDialogMessage function for modeless dialogs. 

Windows also provides a set of common dialogs for common tasks. These include dialogs for opening and saving a file, printer and page setup, color and font selection, and text find and replace functions. In addition, a set of common dialogs is available to implement OLE-related functionality. 

Controls include buttons, static text, edit boxes, list boxes, combo boxes, and scrollbars. Applications can also implement new control types. In addition, Windows 95 defines a set of new common controls: list views, tree views, tab controls, hot key controls, sliders, progress bars, spin buttons, and rich-text edit controls. 

Controls are usually defined through dialog box templates in the application's resource file. Controls communicate with the application by sending messages (such as WM_COMMAND messages) to their owner window, that is, the dialog box.

11 ¡ª Drawing and Device Contexts 
To say that drawing on the screen, the printer, or another output device is one of the most important aspects of a Windows application is stating the obvious. Throughout their lifetimes, Windows applications continually draw and redraw the contents of their windows in response to user actions or other events. 

Needless to say, applications draw to hardware devices using a series of device-independent system functions. Otherwise Windows applications, similar to their MS-DOS counterparts, would be plagued with device incompatibilities and would require device drivers for various video cards, printers, or other graphics hardware. Indeed, device independence is one of the major advantages of offered by a graphical operating system like Windows. 

The GDI, Device Drivers, and Output Devices 

Applications wishing to draw to an output device do so by calling Graphics Device Interface, or GDI functions. The GDI library containing these functions, gdi.dll, makes calls, in turn, to device-specific function libraries, or device drivers. The device drivers perform operations on the actual physical hardware. Device drivers are supplied either as part of Windows or, for less commonly used hardware, as third-party add-ons . The interrelationship between graphical applications, the GDI, device driver software, and hardware devices is schematically illustrated in Figure 11.1. 


Figure 11.1. Interaction between applications, the GDI, device drivers, and output devices. 

Most drawing functions take a handle to a device context as one of their parameters. In addition to identifying the device on which the drawing should take place, the device context also specifies a number of other characteristics, including 

· Mapping of logical coordinates to actual physical coordinates on the device 

· Use of drawing objects such as fonts, pens, or brushes to carry out the requested operation 

· Clipping of drawing functions to visible areas 

Device Contexts 

A device context thoroughly specifies the characteristics of a hardware device. Drawing system functions use this information to translate device-independent drawing calls into a series of device-specific operations carried out with the help of low-level driver code. 

Before a device context can be used, it must be created. The most generic function for creating a device context is the CreateDC function. When calling this function, applications specify the device for which the device context is created, the driver software, the physical port to which the device is attached, and device-specific initialization data. 

When drawing to the screen, applications need not create a device context using CreateDC. Instead, applications can retrieve a handle to a device context representing the client area of a window through the GetDC function or the entire window (including nonclient areas) through GetWindowDC. 

A typical GDI drawing function is the Rectangle function. An application may make the following call to draw a rectangle: 

Rectangle(hDC, 0, 0, 200, 100);

This call draws a rectangle on the device identified by the handle hDC, with its upper-left corner at logical coordinates [0,0], and lower-right corner at [200,100]. Needless to say, a lot takes place behind the scenes before the actual rectangle is formed on the screen. How does the GDI know the physical coordinates corresponding to these logical coordinates? How does it know the color of the rectangle and its interior? The styles used for the rectangle's contours or for filling its interior? The answer is, all this information is available as part of the device context. Coordinate transformations are defined by the mapping mode and any world transformation that may be in effect. The appearance and color of objects drawn are a function of GDI objects which have been selected into the device context. All of this we review shortly. 

Device Context Types 

In the case of the display, Windows distinguishes between common and private device contexts. Common device contexts represent a shared resource across applications. Private device contexts are created for windows with a window class carrying the CS_OWNDC style. Private device contexts are deleted when the window to which they belong is destroyed. 

Memory and Metafile Device Contexts 

Device contexts typically represent physical devices, such as the display, the printer, plotters, or FAX modems. However, there are also some special device contexts in Windows. One of them I already mentioned. A memory device context is a device context that represents a bitmap. By utilizing this device context, applications can write into a bitmap. 

In addition to the obvious use in creating bitmaps (such as in a bitmap editor like the Windows 95 Paint application), memory device contexts have another practical use in graphics-intensive applications. By drawing into a memory device context and transferring the contents only when the drawing is complete, applications can reduce unwanted screen flicker. Through a clever use of multiple memory device contexts, applications can create smooth animation effects. Several functions, which we review shortly, assist in efficiently transferring bitmap data from one device context to another. 

A memory device context is created by a call to the CreateCompatibleDC function. This function creates a memory device context that is compatible with a specified physical device. 

Another type of a device context is a metafile device context. A metafile is essentially a device-independent record of GDI operations. Win32 recognizes two metafile types: standard and enhanced metafiles. Standard metafiles are compatible with Windows 3.1, but they do not implement complete device independence; for this reason, the use of enhanced metafiles for new applications is recommended. 

A metafile device context is created by calling the CreateMetaFile function or, in the case of enhanced metafiles, the CreateEnhMetaFile function. When an application is finished drawing into the metafile device context, it closes the metafile using CloseMetaFile (CloseEnhMetaFile). This call returns a metafile handle that can then be used in calls to PlayMetaFile (PlayEnhMetaFile) or the various metafile manipulation functions. A metafile handle can also be obtained by a call to GetMetaFile (GetEnhMetaFile) for metafiles that have been saved to disk previously. 

Relatively few applications manipulate metafiles directly. However, most applications use metafiles implicitly through OLE. The device-independent metafile format is used by OLE to graphically represent embedded or linked objects. Applications that display embedded objects thus do not need to call the OLE server application (which may not even be installed on the system) every time an OLE object needs to be rendered; instead, they just play back the recorded metafile. 

Information Contexts 

Information contexts are used to retrieve information about a specific device. An information context is created by a call to the CreateIC function. Creating an information context requires far less overhead than creating a device context and is therefore the preferred method for retrieving information about a device. An information context must be deleted after use by calling DeleteDC. 

Coordinates 

Applications typically specify the position and size of output objects in the form of logical coordinates. Before an object appears at a physical location on the screen or printer, a series of calculations takes place to obtain actual physical positions on the device. 

Logical and Device Coordinates 

The transformation from logical to physical coordinates, although simple in concept, can sometimes trick even the experienced Windows programmer. 

The mapping from logical to physical coordinates is accomplished by specifying the characteristics of the window and the viewport. The window, in this context, represents the logical coordinate space; the viewport represents the physical coordinate space of the device. 

For both the window and the viewport, two pairs of values must be supplied. One pair is the horizontal and vertical coordinates of the origin; the other pair is the horizontal and vertical extent. 

Figure 11.2 illustrates how the logical coordinates of a set of rectangles are mapped to device-specific physical coordinates. From this illustration, it should be clear that the absolute size of the logical and physical extents should be of no consequence; what matters is their relative sizes¡ªthat is, the number of logical units mapped to a physical unit or vice versa. 


Figure 11.2. The logical and the physical coordinate system. 

On most devices, the origin of the physical coordinate system is in the upper-left corner and the vertical coordinate grows downward. In contrast, in most logical coordinate systems, the origin is in the lower-left corner and the vertical coordinate grows upward. 

The origin and the extent of the logical and physical coordinate systems can be set using the following four functions: SetViewportExtEx, SetViewportOrgEx, SetWindowExtEx, SetWindowOrgEx. (Use of the old functions SetViewportExt, SetViewportOrg, SetWindowExt, and SetWindowOrg is not supported in Win32.) 

For reference, here is how the GDI converts from logical to physical coordinates and vice versa: 

Dx = (Lx Ð xWO) * xVE/xWE + xVO

Dy = (Ly Ð yWO) * yVE/yWE + yVO

Lx = (Dx Ð xVO) * xWE/xVE + xWO

Ly = (Dy Ð yVO) * yWE/yVE + yWO

The meaning of these symbols should be fairly obvious; for example, Dx is the horizontal device coordinate, yWE is the vertical window extent. Figure 11.3 identifies these symbols graphically. 


Figure 11.3. Mapping logical to physical coordinates. 
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WARNING: Although both Windows 95 and Windows NT use 32-bit coordinate values in GDI function calls, only Windows NT represents coordinates internally as 32-bit values. In the case of Windows 95, 16-bit values are used; the upper 16 bits are simply ignored. 




To facilitate easy changes from one mapping to another, Windows offers a few helper functions. These include: OffsetViewportOrg, OffsetWindowOrg, ScaleViewportExt, and ScaleWindowExt. 

Note that an application can change the horizontal or vertical orientation of the window or viewport by specifying a negative extent value. 

To calculate explicitly a set of physical coordinates from logical coordinates, or vice versa, applications can use the LPtoDP and DPtoLP functions. 

Constrained Mapping Modes 

What has been said about mapping modes so far is true for the so-called unconstrained mapping mode. 

The GDI supports several mapping modes; the unconstrained mapping mode MM_ANISOTROPIC is but one. Other mapping modes include the following: 

MM_TEXT. The origin of the logical coordinate system is the upper-left corner, and vertical coordinates are growing downwards. In other words, MM_TEXT is the equivalent of no mapping at all. A logical unit equals one pixel. 

MM_LOENGLISH. The origin is in the lower-left corner, and vertical coordinates grow upwards. A logical unit is equal to one hundredth of an inch (0.01"). 

MM_HIENGLISH. The origin is in the lower-left corner, and vertical coordinates grow upwards. A logical unit is equal to one thousandth of an inch (0.001"). 

MM_LOMETRIC. The origin is in the lower-left corner, and vertical coordinates grow upwards. A logical unit is equal to one tenth of a millimeter (0.1 mm). 

MM_HIMETRIC. The origin is in the lower-left corner, and vertical coordinates grow upwards. A logical unit is equal to one hundredth of a millimeter (0.01 mm). 

MM_TWIPS. The origin is in the lower-left corner, and vertical coordinates grow upwards. A logical one twentieth of a point (1/1440"). 

MM_ISOTROPIC. The only restriction is that horizontal and vertical logical units are of equal length. Applications can freely specify the origin of the logical and physical coordinate systems, as well the their horizontal extents. The vertical extents are computed from the horizontal by the GDI. 

In the six constrained mapping modes, applications are free to change the viewport and window origin, but attempts to change the viewport or window extent (through SetViewportExtEx or SetWindowExtEx) are ignored. 

World Coordinate Transforms 

Flexible as the coordinate mapping capabilities in Windows are, Windows NT further extends these capabilities with the concept of World Coordinate Transforms. This capability makes it possible for applications to specify an arbitrary linear transformation as the mapping from the logical to the physical coordinate space. 

To understand how world transformations work, it is necessary to delve into coordinate geometry. 

Linear transformations fall into the following categories: translation, scaling, rotation, shear, and reflection. 

Translation (Figure 11.4) means that constants are added to both the horizontal and vertical coordinates of an object: 

Equation 1 

Equation 2 


Figure 11.4. Translation. 

Scaling (Figure 11.5) means stretching or compressing the horizontal or vertical extent of an object: 

Equation 3 

Equation 4 


Figure 11.5. Scaling. 

During a rotation (Figure 11.6), points of an object are rotated around the origin. If the angle of the rotation, a, is known, the rotation can be expressed as follows: 

Equation 5 

Equation 6 


Figure 11.6. Rotation. 

Shearing (Figure 11.7) is a transformation that turns rectangles into parallelograms. Shearing adds a displacement to point's horizontal coordinate that is proportional to the vertical coordinate, and vice versa. Shearing can be expressed by the following formulae: 

Equation 7 

Equation 8 


Figure 11.7. Shearing. 

A reflection mirrors an object with respect to either the horizontal or the vertical axis. Figure 11.8 shows a reflection with respect to the horizontal axis. This reflection can be expressed with the following formula: 

Equation 9 


Figure 11.8. Reflection with respect to the horizontal axis. 

A reflection with respect to the vertical axis can in turn be expressed as follows: 

Equation 10 

All these transformations can also be expressed in matrix form using 3x3 matrices. The matrix form of a translation is this: 

Equation 11 

The matrix form of scaling: 

Equation 12 

The matrix form of a rotation, expressed using trigonometric functions of the rotation angle: 

Equation 13 

The matrix form of a shearing: 

Equation 14 

A reflection with respect to the horizontal axis is expressed in matrix form as follows: 

Equation 15 

Finally, a reflection with respect to the vertical axis takes the following matrix form: 

Equation 16 

Linear transformations can be combined. The result of two linear transformations is a third linear transformation. In matrix formulation, the resulting transformation can be expressed as the product of the matrices representing the original transformation. 
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NOTE: Linear transformations are not commutative. In other words, the order in which they are performed is important. 




While any linear transformation can be expressed in the form of a series of the five basic transformations mentioned here, a generic linear transformation may not be a simple translation, scaling, rotation, shearing, or reflection. A generic linear transformation can be expressed as follows: 

Equation 17 

This is exactly the type of matrix an application must supply to the SetWorldTransform function. The second parameter of this function is a pointer to an XFORM structure, which is defined as follows: 

typedef struct  _XFORM

{

    FLOAT eM11;

    FLOAT eM12;

    FLOAT eM21;

    FLOAT eM22;

    FLOAT eDx;

    FLOAT eDy;

} XFORM;

Before you start worrying about matrix multiplication, I should tell you about the CombineTransform function. What this function really does is a multiplication of two transformation matrices expressed in the form of XFORM structures. 

Once a world transformation has been set for a device context, it will transform logical coordinates from world space to page space. Page space coordinates are further subject to the transformation specified by the mapping mode, as discussed in the previous section. 

Although applications can use the DPtoLP function to obtain the world coordinates for a given set of physical coordinates, it is sometimes useful to explicitly obtain the transformation matrix corresponding to the inverse transform. In order to obtain the inverse matrix, one should first calculate the determinant of the transformation matrix: 

Equation 18 

If this value is zero, the inverse matrix does not exist. This happens when the world transformation is pathological, and maps many points in world space to the same point in page space, for example, when it maps world space onto a line in page space. In this case, a point in page space no longer corresponds to a unique point in world space and thus the inverse transformation is not possible. 

Once the determinant has been obtained, the inverse matrix can be calculated easily: 

Equation 19 

Accordingly, here is a short function (Listing 11.1) that creates the inverse transform of a world transform. If the inverse transform does not exist, the function returns the identity transform. The function's return value is set to FALSE in this case to indicate an error. In keeping with the tradition of other XFORM-related functions, InvertTransform also accepts the same pointer for both the input and the output XFORM structure. 

Listing 11.1. Inverting a world transformation.
BOOL InvertTransform(LPXFORM lpxformResult, CONST XFORM *lpxform)

{

    XFORM xformTmp;

    FLOAT D;

    D = lpxform->eM11*lpxform->eM22 - lpxform->eM12*lpxform->eM21;

    if (D == 0.0)

    {

        lpxformResult->eM11 = 1.0;

        lpxformResult->eM12 = 0.0;

        lpxformResult->eM21 = 0.0;

        lpxformResult->eM22 = 1.0;

        lpxformResult->eDx = 0.0;

        lpxformResult->eDy = 0.0;

        return FALSE;

    }

    xformTmp.eM11 = lpxform->eM22 / D;

    xformTmp.eM12 = -lpxform->eM12 / D;

    xformTmp.eM21 = -lpxform->eM21 / D;

    xformTmp.eM22 = lpxform->eM11 / D;

    xformTmp.eDx = (lpxform->eM21*lpxform->eDy -

                    lpxform->eM22*lpxform->eDx) / D;

    xformTmp.eDy = (lpxform->eM12*lpxform->eDx -

                    lpxform->eM11*lpxform->eDy) / D;

    *lpxformResult = xformTmp;

    return TRUE;

}

On a final note, the SetWorldTransform function will fail unless the graphics mode for the device context has first been set to GM_ADVANCED using the SetGraphicsMode function. In order to reset the graphics mode to GM_COMPATIBLE, applications must first reset the world transformation matrix to the identity matrix. 

Drawing Objects 

Coordinate transformations define where a drawing is placed on the output device. What the drawing looks like is defined by the use of GDI objects. 

GDI offers a variety of drawing objects: pens, brushes, fonts, palettes, and bitmaps. Applications that use such objects must perform the following steps: 

1. Create the GDI object. 

2. Select the GDI object into the device context. 

3. Call GDI output functions. 

4. Select the object out of the device context. 

5. Destroy the object. 

GDI objects are created using any one of a variety of functions that we will acquaint ourselves with in a moment. Once created, a GDI object is referred to by a handle and can be selected into the device context using the SelectObject function. (Palettes are selected using SelectPalette.) This function also returns a handle to the previously selected pen, brush, font, or bitmap; when drawing is completed, this can be used to restore the device context to its previous state. Unused objects are destroyed using the DeleteObject function. 

It is not always necessary to create a GDI object from scratch. Applications can also retrieve predefined system objects using the GetStockObject function. GetStockObject can be used to retrieve a handle to a variety of pens, brushes, fonts, and the system palette. While it is not necessary to call DeleteObject for a stock object, it is not harmful either. 

Pens 

Pens are used to draw lines, curves, and the contours of other shapes. A pen is created using the CreatePen function. When calling CreatePen, applications specify the pen's width, style, and color. 

Pen color is specified as an RGB value; however, if there is matching entry in the logical palette, Windows usually substitutes the nearest palette color. The exception is the case when the width of the pen is greater than one and the style is PS_INSIDEFRAME; in this case, Windows uses a dithered color. 

Dashed and dotted pen styles are not supported for pens with a width greater than one. However, in the case of Windows NT, such pens can be created using the ExtCreatePen function. This function is also available under Windows 95, but its utility is limited. 

ExtCreatePen also gives greater control over the shapes of joins and end caps. 

Another function that can be used to create a pen is the CreatePenIndirect function. This function takes a pointer to a LOGPEN structure as its parameter. The LOGPEN structure defines the pen's width, color, and style. 

Drawing with a pen is affected by the foreground mix mode. This mode is set using the SetROP2 function. There are several settings that define various logical operations between the pen color and the pixel color. The current mixing mode can be retrieved using the GetROP2 function. 

Brushes 

Brushes are used to fill the interior of drawing shapes. The use of a brush defines the interior color and pattern. 

A brush is created by a call to the CreateBrushIndirect function. This function accepts a pointer to a LOGBRUSH structure, which specifies the brush style, color, and pattern. 

A brush pattern can be based on a bitmap. If the brush style is set to the values BS_DIBPATTERN or BS_DIBPATTERNPT, the lbStyle member of the LOGBRUSH structure specifies a handle to a bitmap. 
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NOTE: Windows 95 only supports 8x8 bitmaps. If a larger bitmap is specified, only a portion of the bitmap is used. 




Alternatively, a brush can be hatched; in this case, the lbStyle member of the LOGBRUSH structure specifies the hatch pattern. 

The lbColor member specifies the foreground color of a hatched brush. However, the background color and mode are controlled by the SetBkColor and SetBkMode functions, respectively. 

A specific problem related to pattern and hatch brushes is the problem of brush origin. In order to provide a smooth appearance, it is necessary to align the origin of a brush bitmap or hatch brush pattern when portions of a shape are drawn at different times. Under Windows 95, this is accomplished by calling UnrealizeObject every time before a brush is selected into a device context. This is not necessary under Windows NT, which tracks brush origins. 

Applications can explicitly specify the brush origin through SetBrushOrgEx. The brush origin is a pair of coordinates that specify the displacement of the brush pattern relative to the upper-left corner of the window's client area. 

There are several additional functions assisting in the creation and use of brushes. Solid brushes, pattern brushes, and hatch brushes can be created by calling CreateSolidBrush, CreatePatternBrush, and CreateHatchBrush, respectively. Brushes based on device-independent bitmaps can be created with CreateDIBPatternBrushPt. 

Drawing the interior of an object is also affected by the foreground mix mode setting as specified by a call to the SetROP2 function. 

Fonts 

Before an application can output any text, it must select a logical font for text output. Logical fonts are created by calling the CreateFont function. 

Users who are accustomed to applications that enable them to explicitly select a font by name, attributes, and size may find using CreateFont confusing at first. Although it is still possible to select a font by name, CreateFont offers a selection of a large number of additional parameters. 

However, one has to realize that this method of creating a logical font is yet another feature through which Windows implements complete device-independence. Instead of making applications dependent on the presence of a specific font (which may not be available on all output devices, or may not be available on different computers) fonts are selected on the basis of their characteristics. When an application requests a font through CreateFont, Windows supplies, from the set of available fonts, the font that matches the requested characteristics best. 

Nevertheless, it is possible to specify the name and size of a typeface to CreateFont. If this is done, Windows will attempt to select the desired font if it is available on the system. 

Applications can also use CreateFontIndirect to obtain a logical font. This function takes a pointer to a LOGFONT structure as its parameter. This function is especially useful when used in conjunction with the Font Selection Common Dialog, which returns the user's choice in the form of a LOGFONT structure. 

The EnumFontFamilies function can be used to enumerate all font families, or the fonts in a font family. 

Many other font-related functions assist the application programmer. For example, functions such as GetCharABCWidths help determining the width of characters. The function GetTabbedExtent or GetTextExtentPoint32 calculate the width and height of a text string. 

Applications can also install and remove fonts using the AddFontResource, CreateScalableFontResource, and RemoveFontResource functions. 

Palettes 

Palettes would not be necessary if all output devices were capable of displaying the full range of colors defined by a 24-bit RGB value. Unfortunately, most lower cost display devices offer a compromise between color depth and screen resolution. Most PCs nowadays operate using a screen resolution of 800x600, 1024x768, or 1280x1024 using 256 colors. 

Whether a given device supports palettes can be determined by calling the GetDeviceCaps function and checking for the RC_PALETTE flag in the RASTERCAPS value. For these devices, a color palette defines the colors that are currently available for use by applications. 

The system palette specifies all colors that can be currently displayed by the device. However, applications cannot directly modify the system palette, although they can view its contents through the GetSystemPaletteEntries function. The system palette contains a number (usually 2¨C20) of static colors that cannot be modified by palette changes. However, applications can set the number of static colors using the SetSystemPaletteUse function. 

The default palette has typically 20 color entries, although this may vary from device to device. If an application requests a color that is not in the palette, Windows approximates the color by selecting the closest match from the palette or, in the case of solid brushes, by using dithering. However, this may not be sufficient for color-sensitive applications. 

What applications can do is specify a logical palette to replace the default palette. A logical palette may contain several colors (up to the number of colors defined by the SIZEPALETTE value, returned by GetDeviceCaps). A logical palette is created by a call to CreatePalette, and its colors can later be modified by calling SetPaletteEntries. A palette is selected into a device context using the SelectPalette function. A palette that is no longer needed can be deleted by calling DeleteObject. 

Before use, a palette needs to be realized using the RealizePalette function. In the case of the display device, depending on whether the palette is a foreground palette or a background palette, Windows realizes the palette differently. A palette can be selected as the foreground palette if the window for which it is selected is either the active window or a descendant of it. There can be only one foreground palette in the system at any given time. The critical difference is that a foreground palette can overwrite all nonstatic colors in the system palette. This is accomplished by marking all nonstatic entries unused before a foreground palette is realized. 

When a palette is realized, Windows fills the unused entries in the system palette with entries from the logical palette. If there are no more unused entries, Windows maps the remaining colors in the logical palette using the closest matching color in the physical palette or using dithering. Windows always realizes the foreground palette first, followed by the remaining background palettes on a first come, first served basis. 

It is important to realize that any changes to the system palette are global in nature; that is, they affect the entire display surface, not just the application's window. Changes in the system palette may cause applications to redraw their window contents. Because of this, there is an advantage to specifying a palette as a background palette; this avoids palette changes when the window for which the palette has been realized gains or loses focus. 

Windows defines some palette-related messages. A top-level window receives a WM_PALETTECHANGED message when Windows changes the system palette. Before a top-level window becomes the active window, it receives a WM_QUERYNEWPALETTE message, enabling the application to realize its palette. The application can do this by calling SelectPalette, UnrealizeObject, and RealizePalette. 

An interesting feature of palettes is palette animation. This technique uses periodic changes in the logical palette to create the impression of animation. Applications can use the AnimatePalette function for this purpose. 

In order to ensure that a given color from a palette is selected (especially important when palette animation is concerned) applications should use the PALETTEINDEX or PALETTERGB macros. 

An application that implements simple palette animation is shown in Listing 11.2. This application can be compiled from the command line by typing cl animate.cpp gdi32.lib user32.lib. Once again, note that this application only works when your video hardware is configured for a 256-color palette-enabled mode. 

Listing 11.2. Palette Animation.
#include <windows.h>

struct

{

    WORD palVersion;

    WORD palNumEntries;

    PALETTEENTRY palPalEntry[12];

} palPalette =

{

    0x300,

    12,

    {

        {0xFF, 0x00, 0x00, PC_RESERVED},

        {0xC0, 0x40, 0x00, PC_RESERVED},

        {0x80, 0x80, 0x00, PC_RESERVED},

        {0x40, 0xC0, 0x00, PC_RESERVED},

        {0x00, 0xFF, 0x00, PC_RESERVED},

        {0x00, 0xC0, 0x40, PC_RESERVED},

        {0x00, 0x80, 0x80, PC_RESERVED},

        {0x00, 0x40, 0xC0, PC_RESERVED},

        {0x00, 0x00, 0xFF, PC_RESERVED},

        {0x40, 0x00, 0xC0, PC_RESERVED},

        {0x80, 0x00, 0x80, PC_RESERVED},

        {0xC0, 0x00, 0x40, PC_RESERVED}

    }

};

POINT pt12[12] =

{

    {0, 1000},

    {500, 866},

    {866, 500},

    {1000, 0},

    {866, -500},

    {500, -866},

    {0, -1000},

    {-500, -866},

    {-866, -500},

    {-1000, 0},

    {-866, 500},

    {-500, 866}

};

void Animate(HWND hwnd, HPALETTE hPalette)

{

    HDC hDC;

    PALETTEENTRY pe[12];

    HPALETTE hOldPal;

    static int nIndex;

    int i;

    for (i = 0; i < 12; i++)

        pe[i] = palPalette.palPalEntry[(i + nIndex) % 12];

    hDC = GetDC(hwnd);

    hOldPal = SelectPalette(hDC, hPalette, FALSE);

    RealizePalette(hDC);

    AnimatePalette(hPalette, 0, 12, pe);

    nIndex = (++nIndex) % 12;

    SelectPalette(hDC, hOldPal, FALSE);

    ReleaseDC(hwnd, hDC);

}

void DrawCircle(HWND hwnd, HPALETTE hPalette)

{

    HDC hDC;

    PAINTSTRUCT paintStruct;

    RECT rect;

    SIZE sizeO;

    POINT ptO;

    HPALETTE hOldPal;

    int i;

    hDC = BeginPaint(hwnd, &paintStruct);

    if (hDC != NULL)

    {

        hOldPal = SelectPalette(hDC, hPalette, FALSE);

        RealizePalette(hDC);

        GetClientRect(hwnd, &rect);

        DPtoLP(hDC, (LPPOINT)&rect, 2);

        ptO.x = (rect.left + rect.right) / 2;

        ptO.y = (rect.top + rect.bottom) / 2;

        sizeO.cx = MulDiv((rect.right - rect.left), 2, 3);

        sizeO.cy = MulDiv((rect.bottom - rect.top), 2, 3);

        for (i = 0; i < 12; i++)

        {

            HBRUSH hbr;

            HBRUSH hbrOld;

            hbr = CreateSolidBrush(PALETTEINDEX(i));

            hbrOld = (HBRUSH)SelectObject(hDC, hbr);

            Ellipse(hDC,

                ptO.x + MulDiv(sizeO.cx, pt12[i].x - 259, 2000),

                ptO.y + MulDiv(sizeO.cy, pt12[i].y - 259, 2000),

                ptO.x + MulDiv(sizeO.cx, pt12[i].x + 259, 2000),

                ptO.y + MulDiv(sizeO.cy, pt12[i].y + 259, 2000)

            );

            SelectObject(hDC, hbrOld);

            DeleteObject(hbr);

        }

        SelectPalette(hDC, hOldPal, FALSE);

        EndPaint(hwnd, &paintStruct);

    }

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    static HPALETTE hPalette;

    switch(uMsg)

    {

        case WM_CREATE:

            hPalette = CreatePalette((LPLOGPALETTE)&palPalette);

            break;

        case WM_PAINT:

            DrawCircle(hwnd, hPalette);

            break;

        case WM_TIMER:

            Animate(hwnd, hPalette);

            break;

        case WM_DESTROY:

            DeleteObject(hPalette);

            hPalette = NULL;

            PostQuitMessage(0);

            break;

        default:

            return DefWindowProc(hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

                                        LPSTR d3, int nCmdShow)

{

    MSG msg;

    HWND hwnd;

    WNDCLASS wndClass;

    if (hPrevInstance == NULL)

    {

        memset(&wndClass, 0, sizeof(wndClass));

        wndClass.style = CS_HREDRAW | CS_VREDRAW;

        wndClass.lpfnWndProc = WndProc;

        wndClass.hInstance = hInstance;

        wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);

        wndClass.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

        wndClass.lpszClassName = "HELLO";

        if (!RegisterClass(&wndClass)) return FALSE;

    }

    hwnd = CreateWindow("HELLO", "HELLO",

                        WS_OVERLAPPEDWINDOW,

                        CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,

                        NULL, NULL, hInstance, NULL);

    ShowWindow(hwnd, nCmdShow);

    UpdateWindow(hwnd);

    SetTimer(hwnd, 1, 200, NULL);

    while (GetMessage(&msg, NULL, 0, 0))

        DispatchMessage(&msg);

    KillTimer(hwnd, 1);

    return msg.wParam;

}

This application draws a series of twelve circles. Each circle has a different color, selected from a logical palette. The application also installs a timer; whenever a WM_TIMER message is received, it makes a call to the AnimatePalette function. 

Bitmap Objects 

Bitmaps are also treated as GDI objects. Typically, applications either draw into bitmaps, or transfer the contents of a bitmap to an output device. 

What exactly is a bitmap? In terms of its visual appearance, it is a rectangular array of pixels. Each pixel can have a different color, represented in the form of one or more bits. The actual number of bits depends on the color depth of the bitmap. For example, a bitmap with a color depth of 8 bits can represent up to 256 colors; a true color bitmap can represent up to 16,777,216 colors using 24 bits per pixel. 

A blank GDI bitmap object is created using the CreateBitmap function. Although suitable for creating color bitmaps, it is recommended that CreateBitmap be used for monochrome bitmaps only; for color bitmaps, use the CreateCompatibleBitmap function. 

Bitmap objects are device dependent. Functions exist that enable applications to write into Device-Independent Bitmaps (DIBs). (This is what is stored in Windows BMP files.) 

Applications can draw into a bitmap by selecting the bitmap into a memory device context. 

To load a bitmap from a resource file, use the LoadBitmap function. This function creates a bitmap object and initializes it with the bitmap from the resource file, as specified by the function's second parameter. 

Clipping 

The technique of clipping is of fundamental importance in a multitasking windowing environment. Thanks to this technique, applications do not accidentally write to the display outside the client area of their windows, nor does it present a problem when parts of an application's window are covered or off-screen. 

In addition to these uses of clipping by the system, applications are also given explicit access to many clipping functions. They can define a clipping region for a device context and limit graphical output to that region. 

A clipping region is typically, but not always, a rectangular region. There are several types of regions and corresponding functions that can be used to create them, summarized in Table 11.1. 

Table 11.1. Clipping Regions. 


	Symbolic Identifier

	Description


	Elliptical Region
	CreateEllipticRgn, CreateEllipticRgnIndirect

	Polygonal Region
	CreatePolygonRgn, CreatePolyPolygonRgn

	Rectangular Region
	CreateRectRgn, CreateRectRgnIndirect

	Rounded Rectangular Region
	CreateRoundRectRgn
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NOTE: Using a nonrectangular region for clipping can be inefficient on certain devices. 




Applications can select a clipping region into a device context by calling SelectObject or SelectClipRgn. The effects of these two functions are equivalent. Another function that enables combining a new region with the existing clipping region in the fashion of the CombineRgn function is SelectClipRgnExt. 

Another form of clipping is accomplished by the use of clip paths. Clip paths can define complex clipping shapes that could not be defined through clipping regions. A clipping path is a path created through the use of the BeginPath and EndPath functions, and then selected as the clipping path by calling SelectClipPath. 

Clip paths can be used to produce interesting special effects. One example is demonstrated in Listing 11.3. This application, shown in Figure 11.9, uses a text string to create a clip path. You can compile this program by typing cl clippath.c gdi32.lib user32.lib at the command line. 


Figure 11.9. Using clip paths. 

Listing 11.3. Using clip paths.
#include <windows.h>

#include <math.h>

void DrawHello(HWND hwnd)

{

    PAINTSTRUCT paintStruct;

    RECT rect;

    HFONT hFont;

    SIZE sizeText;

    POINT ptText;

    HDC hDC;

    double a, d, r;

    hDC = BeginPaint(hwnd, &paintStruct);

    if (hDC != NULL)

    {

        GetClientRect(hwnd, &rect);

        DPtoLP(hDC, (LPPOINT)&rect, 2);

        hFont = CreateFont((rect.bottom - rect.top) / 2,

                           (rect.right - rect.left) / 13, 0, 0,

                           FW_HEAVY, FALSE, FALSE, FALSE,

                           ANSI_CHARSET, OUT_DEFAULT_PRECIS,

                           CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,

                           DEFAULT_PITCH | FF_DONTCARE, "Arial");

        SelectObject(hDC, hFont);

        GetTextExtentPoint32(hDC, "Hello, World!", 13, &sizeText);

        ptText.x = (rect.left + rect.right - sizeText.cx) / 2;

        ptText.y = (rect.top + rect.bottom - sizeText.cy) / 2;

        SetBkMode(hDC, TRANSPARENT);

        BeginPath(hDC);

        TextOut(hDC, ptText.x, ptText.y, "Hello, World!", 13);

        EndPath(hDC);

        SelectClipPath(hDC, RGN_COPY);

        d = sqrt((double)sizeText.cx * sizeText.cx +

                         sizeText.cy * sizeText.cy);

        for (r = 0; r <= 90; r+= 1)

        {

            a = r / 180 * 3.14159265359;

            MoveToEx(hDC, ptText.x, ptText.y, NULL);

            LineTo(hDC, ptText.x + (int)(d * cos(a)),

                        ptText.y + (int)(d * sin(a)));

        }

        EndPaint(hwnd, &paintStruct);

    }

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

                         WPARAM wParam, LPARAM lParam)

{

    switch(uMsg)

    {

        case WM_PAINT:

            DrawHello(hwnd);

            break;

        case WM_DESTROY:

            PostQuitMessage(0);

            break;

        default:

            return DefWindowProc(hwnd, uMsg, wParam, lParam);

    }

    return 0;

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

                                        LPSTR d3, int nCmdShow)

{

    MSG msg;

    HWND hwnd;

    WNDCLASS wndClass;

    if (hPrevInstance == NULL)

    {

        memset(&wndClass, 0, sizeof(wndClass));

        wndClass.style = CS_HREDRAW | CS_VREDRAW;

        wndClass.lpfnWndProc = WndProc;

        wndClass.hInstance = hInstance;

        wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);

        wndClass.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

        wndClass.lpszClassName = "HELLO";

        if (!RegisterClass(&wndClass)) return FALSE;

    }

    hwnd = CreateWindow("HELLO", "HELLO",

                        WS_OVERLAPPEDWINDOW,

                        CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,

                        NULL, NULL, hInstance, NULL);

    ShowWindow(hwnd, nCmdShow);

    UpdateWindow(hwnd);

    while (GetMessage(&msg, NULL, 0, 0))

        DispatchMessage(&msg);

    return msg.wParam;

}

This application draws the text "Hello, World!" using a large Arial font¡ªthe actual size is calculated based on the size of the client area. This text forms the clipping path. Next, a series of lines is drawn from the upper-left corner of the text rectangle; due to clipping, only the portions that fall within characters are seen. 

Drawing Functions 

We have reviewed the idea of a device context as the "canvas" onto which GDI functions paint graphic output; we have reviewed the tools GDI performs the painting with, such as pens, brushes, or fonts. What is left is a review of the actual drawing operations used by the GDI. 

The typical steps taken by an application are illustrated in Figure 11.10. They include obtaining a handle to the device context, setting up the device context for drawing, performing drawing operations, restoring the previous state of the device context, and finally, releasing the device context. Naturally, specific applications may elect to perform these steps in a different order, leave out irrelevant steps, or invoke other initialization or drawing functions to satisfy specific requirements. 


Figure 11.10. Typical steps of GDI output. 

Lines 

The simplest drawing function in Windows creates a line. A simple line is created by a call to the MoveToEx function, followed by a call to the LineTo function. The MoveToEx function updates the current position, which is a point in the coordinate space of the device context that is used by many drawing functions. The LineTo function creates a line from that position to the position specified through its parameters. The line is drawn using the pen that is currently selected into the device context. 

In the case of raster devices, a line is generally drawn using a DDA (Digital Differential Analyzer) algorithm. This algorithm determines which pixels in the drawing surface should be highlighted. Specialized applications that require the use of a nonstandard DDA algorithm can use the LineDDA function. 

A polyline is a line consisting of several line segments. A polyline is defined by an array of points, a pointer to which is passed to the Polyline function. Polyline does not use or update the current position; in contrast, PolylineTo begins drawing from the current position, and updates the current position to reflect the last point in the polyline. 

The PolyPolyline function can be used to draw a series of polylines using a single function call. 

Curves 

The simplest function to draw a curve is the Arc function. A curve drawn by this function is actually a segment of an ellipse. The arc is drawn using the current pen. The ArcTo function is identical to the Arc function, except that it also updates the current position. 

Win32 applications can also draw Bázier curves. Bázier curves represent a cubic interpolation between two endpoints, as defined by two control points. An example for a Bázier curve is shown in Figure 11.11. 


Figure 11.11. A Bázier curve. 

The PolyBezier function draws one or more Bázier curves. One of its parameters is a pointer to an array of points used to define these curves. The endpoint of one curve serves as the starting point of the next curve; consequently, the number of points in this array must be a multiple of three plus one (the first starting point), that is, 4, 7, 10, and so on. 

The PolyBezierTo function is identical to the PolyBezier function except that it also updates the current position. 

Win32 also provides for combinations of lines and curves. The outline of a pie chart can be drawn using the AngleArc function. More complex combinations of lines and curves can be created using the PolyDraw function. 

Filled Shapes 

In addition to lines and curves, GDI drawing functions can also be used to create filled shapes. The outline of filled shapes, similar to lines and curves, is drawn using the current pen. The interior of shapes is painted using the current brush. 

Perhaps the simplest GDI shape is a rectangle. A rectangle is created by calling the Rectangle function. Variants of the Rectangle function include RoundRect (draws a rectangle with rounded corners), FillRect (draws the interior of a rectangle using a specific brush), FrameRect (draws the frame of a rectangle using a specific brush), and InvertRect (inverts a rectangular area on the screen). 

Other shapes can be created using the following functions: Ellipse, Chord, Pie, Polygon. A series of polygons can be drawn using the single function call PolyPolygon. 

Regions 

I have already mentioned regions and their role in clipping. However, the GDI offers several other uses for regions. 

Regions (summarized in Table 11.1) can be filled (FillRgn, PaintRgn), framed (FrameRgn) or inverted (InvertRgn). 

Regions can be combined using the CombineRgn function. To test whether two regions are identical, use the EqualRgn function. A region can be displaced by a specified offset using OffsetRgn. 

The bounding rectangle of a region can be obtained by calling GetRgnBox. To determine whether a specific point or a rectangle fall within the region, call PtInRegion or RectInRegion, respectively. 

Bitmaps 

We have already talked about bitmap objects. Windows offers a variety of functions through which these objects can be copied and manipulated. 

Individual pixels in a bitmap can be set using the SetPixel function. The GetPixel function retrieves the color of the specified pixel. 

A region in a bitmap bounded by pixels of specific colors can be filled using the ExtFloodFill function. 

Perhaps the simplest of functions that manipulate whole bitmaps is the BitBlt function. This function copies a bitmap from one device context to another. It is often used to copy portions of a bitmap in a memory device context to the screen or vice versa; however, it can also be used to copy a bitmap to a different location within the same device context. 

BitBlt returns an error if the source and destination device contexts are not compatible. To ensure that a memory device context is compatible with the display, use the CreateCompatibleDC function to create the device context. 

Although BitBlt uses logical coordinates and performs the necessary scaling when copying bitmaps, it fails if a rotation or shear transformation is in effect. 

In addition to copying source pixels to the destination, BitBlt can also combine source and destination pixels using a variety of pixel operations. 

A variant of the BitBlt function is MaskBlt. This function uses a third bitmap as a mask when performing the operation. 

The PatBlt function paints the destination bitmap using the currently selected brush. 

The StretchBlt function copies the source bitmap to the destination bitmap, stretching or compressing the bitmap as necessary to fit it into the destination rectangle. The stretching can be controlled by the SetStretchBltMode function. 

The PlgBlt function copies the source bitmap into a destination parallelogram. The parallelogram is defined by an array of three points representing three of its vertices; the fourth vertex is calculated using the vector equation D = B + C - A. 

The bitmaps discussed so far are associated by a specific device context; hence, they are device-dependent. Windows also handles device-independent bitmaps, which are stored in memory or on disk. A DIB is specified through a BITMAPINFO structure. Applications can create a DIB using the CreateDIBitmap function. The bits in a DIB can be set using SetDIBits; the DIB's color table can be modified using SetDIBColorTable. The SetDIBitsToDevice function copies a DIB to a device; the StretchDIBits function can be used to copy bits from a device to a device-independent bitmap. 

Paths 

We have already encountered paths in the context of clipping. Paths represent complex shapes created by a series of calls to many GDI output functions, including, for example, the Rectangle, Ellipse, TextOut, LineTo, PolyBezier, Polygon functions. 

A path is created by calling the BeginPath function, performing the drawing operations that form part of the path, and calling EndPath. The pair of calls to BeginPath and EndPath is often referred to as a path bracket. 

Calling EndPath selects the path into the device context. Applications can then do any of the following: 

· Draw the outline or interior of the path, or both (StrokePath, FillPath, StrokeAndFillPath) 

· Use the path for clipping (SelectClipPath) 

· Convert the path into a region (PathToRegion) 

· Modify the path (GetPath, FlattenPath, WidenPath) 

Text Output 

The simplest GDI text output function is the TextOut function. This function outputs text at the specified coordinates using the currently selected font. The TabbedTextOut function is a variant of TextOut that also expands tab characters. The PolyTextOut function can be used to output a series of text strings using a single function call. The ExtTextOut function also accepts a rectangle that can be used for opaquing or clipping. 

The DrawText and DrawTextEx functions can be used to output text with special formatting in a specific rectangle. 

Text output is affected by formatting attributes, which are set through the SetTextColor, SetTextAlign, SetBkColor, SetBkMode, SetTextCharacterExtra, and SetTextJustification functions. 

Applications can obtain the size of a block of text before drawing it by calling GetTabbedTextExtent or GetTextExtentPoint32. 

Notes About Printing 

The GDI is also responsible for providing hardcopy output on printers, plotters, and outer output devices. In the case of most applications, knowing the details of the printing process is not necessary; creating output to a hardcopy device is no different from creating output to the display, using the standard set of GDI function calls on a printer device context. While sometimes it is necessary to be aware of the physical characteristics of the output page and the limitations of the device (for example, a plotter may not support bitmap operations), WYSIWYG applications can most often reuse, with minimal modifications, the same code for printing that they use for display output. 

There are several Windows components involved in printing. The primary component is the print spooler, which manages the printing process. The print processor converts spooled print jobs into calls to the device driver. The device driver generates raw output, which is then processed by the printer device. Finally, the port monitor passes raw device commands to the physical device through a specific port or network connection. 

There are several Win32 functions for spooling print jobs, retrieving information about jobs and printers, and control the printing process. 

Windows 3.1 applications often used printer escapes to carry out specific tasks. These have been superseded by new Win32 functions. New applications should not use the Escape function to control a printer. 

Summary 

The Windows GDI provides a device-independent set of functions that applications can use to create graphic output on all Windows-compatible output devices. The GDI is used to create output on the display screen, on printers, plotters, FAX modems, and other specialized graphic devices. 

All graphic output is directed to device contexts. A device context provides a description of the output device, its characteristics and parameters, and also acts as an interface between the device-independent GDI routines and the device driver software. In a manner of speaking, the device context is the "canvas" on which GDI drawing operations are performed. 

GDI uses a collection of tools for graphic output: 

· Pens are used to draw lines or the contours of shapes. 

· Brushes are used to fill the interior of shapes. 

· Fonts are used for text output. 

· Bitmaps are rectangular arrays of pixels that can be drawn to using memory device contexts and manipulated or transferred between device contexts using bitmap manipulation functions. 

· Palettes are logical collections of colors that the GDI matches as closely as possible by configuring the color settings of the display device. 

· Regions are regular or irregular shapes that can be used, for example, to define clipping. 

Clipping is one of the key capabilities on the GDI. Thanks to clipping, applications do not need to confine their output to the visible part of their windows. Applications can also use clipping operations explicitly to create various graphical effects. 

The coordinate mapping, drawing tools, and clipping define how the GDI performs its drawing operations. What is actually drawn is specified by a series of graphic functions. Applications can draw lines, curves, and filled shapes; can output text; and can manipulate bitmaps. Applications can also utilize paths for a variety of purposes. 

The GDI provides a series of extra functions to facilitate greater control over printing and spooling to the printer. However, unless an application needs to explicitly control the printing process, it is rarely necessary to use these capabilities. Furthermore, in the case of most WYSIWYG applications, it is possible to reuse display output code for printing with minimal modifications.

