1. Event Handling
1.1 Event Loop

Una tecnica per simulare il comportamento di un sistema reattivo è di mettere al centro di ogni applicazione un event loop, ossia un ciclo indeterminato

 while (!finished) {

e = getNextEvent();

dispatch(e);

}

Le applicazioni (spesso molte contemporaneamente) eseguono, restando in attesa di eventi:

· Eventi da bottoni del mouse: LeftButtonDown

· Eventi di movimento del mouse

· Eventi da tastiera: KeyUp, KeyDown

· Eventi di operazioni su finestre: resize, close, destroy, move, minimize

Applications adopt the motto “don't call us (the API), we'll call you''

Quando un utente pigia il bottone sinistro del mouse, per esempio, si genera un evento LeftButtonDown, e ciò provoca che la API invochi l’opportuno codice dell’applicazione per rispondere al tasto pigiato.

Ci sono diversi modi di implementare l’event handling:

· Istruzioni switch/case (Macintosh)

· callbacks (X Windows)

· window procedures (Microsoft Windows)

· tecniche object-oriented (application frameworks)

1.1.1 Un tipico Event Loop su Macintosh

 // initialize application

 …

 // main event loop

 do

 {

 // get an event from the queue

 getnextevent (eventmask, &event);

 // handle the event

 switch (event.type)

 {

 case mousedown:

 DoMouseDown(event);

 break;

 // numerosissimi case!

 ...

 // quit

 case quitmessage:

 done = true;

 break;

 }

 } while (!done);

The event mask is used to filter events out events, which are not of interest to the application

1.1.2 Microsoft Windows

Gli eventi di MS Windows sono chiamati window messages
· ciascuna applicazione ha la propria coda di messaggi

· cisacun widget (button, window, etc) in Microsoft Windows ha la propria procedura per trattare i messaggi ad esso inviati, detta WindowProc()

· il sistema operativo Windows inserisce certi messaggi nella coda dall’applicazione, mentre altri sono inviati direttamente all’opportuna WindowProc()

Ciascuna applicazione deve avere un proprio event loop che sonda la coda alla ricerca di nuovi messaggi:

 MSG msg;

 while (GetMessage(&msg, 0, 0, 0) == TRUE)

 {

 TranslateMessage(msg);

 DispatchMessage(msg);

 }

Chi programma interface utente deve scrivere del codice che svolga il trattamento specifico per l’applicazione dei messaggi di suo interesse inserendo tale codice nella WindowProc() di ciascuna finestra.

Messaggi non rilevanti possono essere lasciati da trattare al sistema operativo Windows perché siano trattati in modo default, invocando la procedura DefWindowProc().

1.1.3 Microsoft Windows: Event Handling

[image: image1.wmf]Windows Application

API

calls

WinMain

()

·

inizializzazione

·

creazione

finestre

·

message loop

WndProc

()

·

gestione

messaggi

Windows

API

messaggi

Figura 1.3 Gestione eventi in MS Windows

1.2 Problemi

· Dispatch: enorme istruzione case

· Istruzioni Switch o case sono comuni nel Macintosh

· The Macintosh Toolbox consiste di diversi moduli, uno dei quali è EventManager che è responsabile di inserire gli eventi nella coda di ciascuna applicazione

· Le code si comportano in modo “first-in-first-out” (FIFO), tuttavia, certi eventi hanno priorità più alta e devono essere trattati prima del loro ordine FIFO

· Quando l’applicazione si è inizializzata, entra nel proprio main event loop:

1. sonda ripetutamente la propria coda degli eventi cercando nuovi eventi

2. esamina il tipo dell’evento per stabilire quale azione deve intraprendere il programma

3. di solito è presente un grande blocco di istruzioni switch/case che invoca le routine adatte a seconda del tipo dell’evento
· Alternativa: callbacks

· Alternativa: programmazione ad oggetti

· Perdita unitarietà del codice

· Difficoltà di manutenzione

· Le attività svolte dentro la gestione dell’evento devono terminare rapidamente, altrimenti l’intero sistema si blocca

· Non ci può essere più di un singolo event-loop

1.2.1 Event Handling in X Windows

Events are sent from the server to the client over the network.

The event reaches the widget code, which then calls a special procedure in the application code called the callback

Callbacks must be registered with X during program initialization

1.2.2 Event-driven pattern

There are three basic components in an event-driven application:

1. Event sensors detect and retrieve events from various sources (such as keyboards or network adapters);

2. Event demultiplexers dispatch events to the appropriate event handlers;

3. Event handlers process incoming events received by sensors in an application-specific way.

Traditional event-driven software employs an explicit event loop. This loop waits continuously for events from one or more sensors. When an event arrives, demultiplexing code in the loop maps the event to its associated event handler, which services the event. One drawback with this approach is that it tightly couples the low-level details (event demultiplexing and dispatching) with high-level behavior (application-specific semantics). Although explicitly coding the event loops may increase performance, it also may cause developers to expend more effort porting, repairing, and extending their applications.

The contemporary patterns of event-driven system design share a common theme of separating application policies from event mechanisms. For example, frameworks for defining user-interfaces (such as Motif or Interviews) and distributed objects (such as CORBA) use features such as callbacks, inheritance, and dynamic binding to decouple application-specific processing policies from application-independent event demultiplexing and event handler dispatching mechanisms. Placing these reusable mechanisms in the framework allows programmers to concentrate on application-specific functionality. Thus, rather than explicitly coding the event loop, programmers define objects for application-specific event processing. These objects are registered with a central event dispatcher. When particular events occur, the dispatcher calls back to the appropriate method(s) on the objects.

1.2.3 Observer Pattern, Publish-Subscribe

Purpose of Observer pattern also known as Dependents and Publish-Subscribe is solution of following problem: Define a one-to many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically. In the nutshell there must be class to be observed and class which is going to observe it. The first class should implement Attach, Detach and Notify methods and also some container where references to observers will be stored. Observer must expose Update method (corresponds to event handler in .NET) whose purpose is to be called by Notify and to inform observer about changes of observed object. Further, both of these classes will be the base for concrete implementation (to improve reusability and simplify implementation) or to put all that in UML:

1.3 Event Handling in Object-Oriented Frameworks

Recall that application frameworks consist of object-oriented class libraries that

· encapsulate the widgets

· encapsulate the complexity of the API

Programmers use sub-classes (inheritance) to implement their programs with application-specific behavior.

 Beneath the toolkit, the event mechanism of the underlying window system is still the same.

 However, instead of callback procedures or code inside of WindowProcs, the framework calls special class member functions, called handlers, when a message is received.

 Programmers must code these handler routines in order for the widgets in their application to respond to events.

1.4 Event Handling in MFC

For example, if we were using Microsoft Foundation Classes, and we wanted to add code so that when the “submit'' button is pressed, we would add a handler for the BN_CLICKED message so that it would call the OnClickSubmit() method when the message is received:

void CMyDialog::OnClickSubmit()

{

...

}

Some classes already provide a virtual function for certain messages. For example, all windows have a routine called OnPaint() that is called whenever a WM_PAINT message is received. This method is part of the class CWnd. So if you want to specialize the redrawing behavior of your window, you need only provide a method called OnPaint() in your derived class. You do not necessarily need to add the handler since the base class already provides one.

1.5 Event Handling in Java
1.5.1 AWT (Java 1)
The AWT handles events automatically and invisibly in EventDispatchThread.run. It reads the stream of native GUI event messages, and translates them, creating Java events, which it puts into the SystemEventQueue. The thread that processes events, when it finishing processing one event, goes and picks up another event off the head of the event queue to dispatch. This is the very thread that executes most of your application code.

The loop that processes events does not even start until your main program has finished executing! This event loop code is not visible to the application programmer.
1.5.1.1 How a Button Press Works

For each button on the screen there are three objects:

1. the application program's awt.Button object.

2. AWT's awt.peer.ButtonPeer object for interfacing to the native GUI. (There may actually be several peer objects, some of them hidden.)

3. possibly the native GUI's totally mysterious internal button object.

To kick this all off, the user clicks the mouse on a button.

The native GUI looks in the peers and/or its private tables to narrow down which app, and within that which panel, and within that which button was pressed and generates a native GUI event which is handed over to the corresponding ButtonPeer object in the AWT. Alternatively it may just create a native GUI event message.

The narrowing logic all happens totally behind the AWT's back. It is the native GUI's problem to figure out which component in a container was clicked by analysing x-y co-ordinates and comparing them with bounding rectangles.

The native GUI may change the look of the button at this point, e.g. to make it look pressed. The peer object and native GUI will get a second crack at processing the event later, but it most likely will do all of its processing now.

Sometimes the native GUI handles dispatching -- finding the corresponding peer object to give the event to. Sometimes the AWT peer logic has to do it. Application programmers need not concern themselves with either narrowing or dispatching.

From the Java programmer's point of view an event magically appears at the bottom of the hierarchy directly at the corresponding ButtonPeer object.

The AWT then constructs a Java-style corresponding event object to announce that a button has been clicked.
The Java event loop passes event information to a component via the component's handleEvent() method. All valid handleEvent() methods must be of the form

public boolean handleEvent(Event e);
An event handler requires a single piece of information: a reference to the instance of the Event class containing information about the event that just occurred.

The value returned from the handleEvent() method is important. It indicates to the Java run-time system whether or not the event has been completely handled within the event handler. A true value indicates that the event has been handled and propagation should stop. A false value indicates that the event has been ignored, could not be handled, or has been handled incompletely and should continue up the tree.
[image: image2.png]Applet

Testhrea

Panel "1"

Pand "2

Button "One"

Button "Two"

public boolean handleEvent(Event evt)
{
 switch (evt.id)

case Event.ACTION_EVENT:

 …

case Event.MOUSE_DOWN:

return mouseDown(evt, evt.x, evt.y);

}
 return super.handleEvent(evt);
}
Applets have a series of six methods that you can use to control how the mouse behaves. One senses when the mouse button is pushed down; one senses when it is released; one senses when the mouse is moving; one senses when the mouse is being dragged; one senses when the mouse first comes into the applet's area of the screen; and one senses when the mouse leaves the applet and heads back to the rest of the HTML page. You can use any or all of these six methods to provide functionality to your applet.

The six methods are mouseUp(), mouseDown(), mouseMove(), mouseDrag(), mouseEnter(), and mouseExit(). Their method declarations are very similar, and are shown below:

public boolean mouseUp(Event e, int x, int y);
public boolean mouseDown(Event e, int x, int y);
public boolean mouseMove(Event e, int x, int y);
public boolean mouseDrag(Event e, int x, int y);
public boolean mouseEnter(Event e, int x, int y);
public boolean mouseExit(Event e, int x, int y);
1.5.2 Delegation Event Model (Swing Java 2)
There were a few flaws with the Java 1.0 Inheritance Event Model:

· an event could only be handled by the component which generated it or by one of the containers that contained the original component

· a large number of CPU cycles were wasted on uninteresting events. Any event in which a program had no interest would just flow through the containment hierarchy before it was eventually discarded. The original model provided no way to disable irrelevant events.
· Handling of events required defining subclassing to achieve different behaviour
An event would percolate up the container tree until it was handled or reached the top of the tree, in which case it disappeared. Suppose a Frame contains a Panel which contains a Button. If the user clicks the left mouse button within the Button and no object handles it, then the event follows this path:
[image: image3.png]ButtonPeer

e
ACTION_EVENT

Frame

Panel

i

Button

The AWT is a layered toolkit: it is built on top of a native toolkit, such as Windows or Motif. If we look under the hood at what happens to the native event then we see that the AWT event processing takes place after things have happened in the native object. So a Button would be pressed and released (with all the visual effects this entails) and an AWT ACTION_EVENT would be generated to be handled by the application; a key would be pressed and appear in a TextArea and an AWT KEY_PRESS would be generated. An item would be selected in a List, causing it to be highlighted and any previous selection removed, and then an AWT LIST_SELECT would be generated to be handled by the application.

The old model worked like this: something would happen to the GUI object (a window would be iconified, a menu item would be selected, a scrollbar would be moved, etc). After the native toolkit had handled it, then the application would be informed by an event being sent to it. Under X, this was done at the native code level by the use of Xt callback functions, or by adding an X event handler for events which were of no interest to the Xt widget but were of interest to the AWT toolkit. Note that the Java application should regard the AWT event as a readonly object - changes to it are meaningless. The path from native event to AWT event for mouse clicks is shown here:

[image: image4.png]server

ButtonRelease
—_—

activate
callback

!

XmPushButton

ButtonPeer

_—
ACTION_EVENT

1.5.3 Why the new (and new) event model?

The new event model is set in place to allow filtering of events. The most common examples occur in entering text, and this is the first set of events to be handled by the new model.

· If all text entered is to appear in upper-case, then whatever the user types should be converted to upper-case before it appears in the textbox. That is, a character typed must be vetted by the application and converted to a different character if needed.

· In entering a password, the echoing of the character should be suppressed. The TextField would be subclassed by a class that stopped the character from being displayed, while keeping a record of it internally. (We ignore the method setEchoCharacter() - this is a kludge to solve a special case of the previous point.)

· In macro expansion, characters typed may be expanded to others e.g. a tab may be expanded to eight spaces. The original character must be discarded and replaced by a set of other characters.

What is happening in these examples? Look at the events:

· An original user-generated event is modified by changing the key field before delivering it to the native GUI object.

· The original user-generated event is discarded before reaching the GUI object.

· The original event is expanded into a set of events.

The new event model is designed to allow this sort of filtering by offering an event to the application before it gets to the native GUI object, and allowing the application to decide what to do with it. This makes the Java application a more active, controlling participant in the event handling process. This is much better than, say, trying to blank out passwords by removing the text after it has been typed!
Java in release 1.1 is now up to its third event processing model! The first one - called the “old” event model was abandoned before Java left beta stage. It was replaced by the “new” event model for Java 1.0. Unfortunately, two things marred this transition to the new model:

· Books had already begun to appear using the old event model, and hardly anyone mentioned the new model.

· The new model didn't work until JDK 1.0.2, so everyone continued to use the old model anyway.

The difference between the old and new models is subtle and depends on a complex interplay of events that belong to the underlying native implementation and the Java events. This was covered in the Java 1.0 version of this book.

Both the old and new models had serious Software Engineering deficiencies that led to poor quality code as soon as applications started to grow in scale. A solution to this was already known as the Command Pattern, and this was adopted for the third event model for the Java AWT. The Command Pattern was renamed “delegation” by Sun engineers, and forms a much cleaner way of handling events. Basically, it allows the application to register handlers (called listeners) with graphical objects, which are called when suitable events arrive.

There are complex implementation layers and issues arising from the third event model. When the user performs an action such as a keypress, a native code event is generated. This is firstly handled by native code at, say, the Windows or X level. The event may be caught by the native toolkit or ignored. If caught, two things may happen:

· The event may be given to the native GUI object and then to the Java object.

· The event may be given to the Java object and then to the native GUI object.

Which one of these occurs depends on the event type.

When an event is handed to the Java layer, it is changed into a Java event. Java code looks to see if there is an event listener using the third event model. If there is, this is used. If there is not, then the second “new” event model is used. Sometimes there is no listener but the third model should be used anyway. This can be forced.
1.5.4 Listeners

A listener is registered with an event type for an object. For example, an application can register a key event listener for any Component, or an action event listener for objects such as Button or TextField. Listeners are where the programmer places application specific code to respond to user events. When a suitable event occurs, an appropriate method on the listener is invoked.

For example, suppose we are building a Web browser. We may have a Back button to return to the previously displayed page. When we click on this Back button, the application will need to reload the last page into the browser window and reset history lists, current URL pointers, etc. This is not GUI code, though it is clearly application code that affects GUI objects as well as other application objects of the browser. The Back function can also be invoked in other ways, such as by a hot-key or by menu selection. Not only is the behavior application specific, but there is more than one way way of invoking this behavior. A listener object encapsulates this behavior, and should be registered with the Back button, the hot-key combination and the menu selection.

When a listener is invoked, it has to be by one of its methods. There could be a standard method such as execute() or by one customised to the event that caused it. The JDK 1.1 has chosen the second method. So if the mouse is clicked in a Button, then an action event is generated (invisibly to most applications), and the actionPerformed() method is called on any action listener. On the other hand, whenever a key is pressed in a Component, then the method keyPressed() is called in any key event listener.

This could have been more simply if simplicity was the only driving force behind this event model: however, Java Beans imposes extra requirements which lead to these multiple event types.

The methods defined for listeners are done using interfaces. This is an absolutely appropriate use of the interface mechanism. Since listeners contain application code, they will probably have an inheritance based on the application, not on some vagaries of the GUI side. All the listener needs to do is to implement certain methods, so that the internal event handling code can call the right method. So, for example, the ActionListener is defined by

 public interface ActionListener extends EventListener {

 public abstract void actionPerformed(ActionEvent e)

 }

whereas KeyListener is defined by

 public interface KeyListener extends EventListener {

 public abstract void keyPressed(KeyEvent e);

 public abstract void keyReleased(KeyEvent e);

 public abstract void keyTyped(KeyEvent e);

 }

1.5.5 Implementing Listeners

Since a listener is defined as an interface, any application code inheriting a listener specification must implement its methods. The rest of the listener code is upto the application. Listener methods will usually interact with other objects of the application. Some of these will be GUI objects, some won't. It doesn't really matter. Returning to our browser example, the Back button listener will need to access the URL object to retrieve the previous URL, and the browser display object to show it. One is graphical, the other is not.

Listener objects - just like any object - get knowledge about other objects in three ways

· They create the other objects and store them in local variables.

· The other objects are passed in by the constructor.

· The other objects are set by special methods

Here is a trivial application just to show how listeners are created and used. The application has a Button on the left, a Button on the right and a Label in the middle. The left Button has the label ``Left'', and the right one has the label ``Right'' When either Button is pressed, the text showing in the Label is set to either ``Left'' or ``Right'' i.e. the label of the Button pressed.
class MyClass implements ActionListener {

MyClass() {

source.addActionListener(this);

buttonLeft = new MyButton(“Left”);

buttonRight = new MyButton(“Right”);

}

public void actionPerformed(ActionEvent e) {

if (e.target == buttonLeft)

e.target.Display(“sinistra”);

else if (e.target == buttonRight)

e.target.Display(“destra”);

}

}

class MyButton extends Button {

public void Display(String s) { … }

}

class ButtonLeft implements ActionListener {}

class ButtonRight implements ActionListener {}

nested classes

1.5.6 Event handling
Every time the user types a character or pushes a mouse button, an event occurs. Any object can be notified of the event. All it has to do is implement the appropriate interface and be registered as an event listener on the appropriate event source. Swing components can generate many kinds of events. Here are a few examples:

	Act that results in the event
	Listener type

	User clicks a button, presses Return while typing in a text field, or chooses a menu item
	ActionListener

	User closes a frame (main window)
	WindowListener

	User presses a mouse button while the cursor is over a component
	MouseListener

	User moves the mouse over a component
	MouseMotionListener

	Component becomes visible
	ComponentListener

	Component gets the keyboard focus
	FocusListener

	Table or list selection changes
	ListSelectionListener

Each event is represented by an object that gives information about the event and identifies the event source. Event sources are typically components, but other kinds of objects can also be event sources. As the following figure shows, each event source can have multiple listeners registered on it. Conversely, a single listener can register with multiple event sources.
Every event handler requires three bits of code:

1. In the declaration for the event handler class, code that specifies that the class either implements a listener interface or extends a class that implements a listener interface. For example:
public class MyClass implements ActionListener {

2. Code that registers an instance of the event handler class as a listener upon one or more components. For example:

someComponent.addActionListener(instanceOfMyClass);

3. Code that implements the methods in the listener interface. For example:

public void actionPerformed(ActionEvent e) {

 ...// code that reacts to the action...
}
1.6 Event Handling in .NET

The Windows Forms programming model provides a mechanism that forms use to respond to input from menus, controls, and other GUI application elements. Traditional Windows-based applications process WM_COMMAND and WM_NOTIFY messages using Windows Forms process events.

1.6.1 Delegates

C# and other languages that support the .NET Common Language Runtime (CLR), provide the notion of delegate. A delegate type is the CLR's equivalent of a type-safe function pointer type. A delegate is a reference type that holds a method's signature. For non static methods, a delegate instance consists in a pair <object, method>: invoking the delegate corresponds to invoking the method on the object. An application can assign any method that matches this signature to a delegate variable. When this delegate variable is invoked, the associated method is called. C# delegates automatically support multicasting. An application can assign many methods to one delegate variable; when the variable is invoked, all methods are called.
1.6.2 Events

Delegates — in particular multicast delegates — are essential in realizing the subscription-notification pattern. The following example describes how Class Subscriber subscribes to an event issued by Class EventIssuer.
1. Class EventIssuer is an issuer of E-events. It maintains a public multicast delegate D.
2. Class Suscriber wants to respond to E-events with its event-handling method M. It therefore adds onto D a reference to M.
3. When Class EventIssuer wants to issue an E-event, it simply calls D. This invokes all of the methods which have subscribed to the event, including M.
The 'event' keyword is used to declare a particular multicast delegate (in fact, it is usual in the literature to just identify the event with this delegate). The code below shows a class EventIssuer, which maintains an event field myEvent. We could instead have declared the event to be a property instead of a field. When the method issueEvent is called, the event myEvent is called, sending out both a reference to its parent object and arbitrary arguments.

public class EventIssuer

{

 public delegate void EventDelegate(object from, EventArgs args);

 public event EventDelegate myEvent;

 public void issueEvent(EventArgs args)

 {

 myEvent(this, args);

 }
A class which wanted to handle the events issued by an EventIssuer ei with its method handleEvents would then subscribe to these events with the code:
Class Subscriber {
ei.myEvent += new EventIssuer.EventDelegate(this.handleEvents);

public void handleEvents(…)

}

1.6.3 GUI Events

Virtually all Windows Forms control classes (and many non-control classes, too) fire events. For example, button controls — instances of System.WinForms.Button — fire Click events when they are clicked. A form that wants to respond to button clicks can use the following syntax to wire a button to a Click handler:
MyButton.Click += new EventHandler(this.OnButtonClicked);

 •••

private void OnButtonClicked(object sender, EventArgs e)

{

 MessageBox.Show("Click!");

}

EventHandler() is a delegate defined in the System namespace. This example wraps an EventHandler around the OnButtonClicked() method and adds it to the list of event handlers called when MyButton fires a Click event. OnButtonClick()'s first parameter identifies the object that fired the event. The second parameter is basically meaningless for Click events but is used by certain other event types to pass additional information about the event.
Observer

Update()

SetObservedObject()

GetObservedObject()

Observable

Attach(o: Observer)

Detach(o: Observer)

Notify()

_951650717.doc

Windows Application

WinMain()

WndProc()

Windows

API

API

calls

inizializzazione

creazione finestre

message loop

gestione messaggi

messaggi

