
Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Types (1stPart)

Francesco Nidito

Programmazione Avanzata AA 2005/06



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Outline

1 Introduction

2 Type checking

3 Types in the practice

4 Advanced Types

Reference: Micheal L. Scott, “Programming Languages
Pragmatics”, Chapter 7



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

What is a type

Hardware

can manage bits in different ways
has no type, but provides operations on numbers and
pointers

Software creates the abstraction of types

Type

defines the memory layout of data
defines a set of operations that can be performed on value
belonging to that type



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Type system

A type system consists of

a mechanism for defining types and associating them to
language structures

a set of rules for:

type equivalence (TypeA = TypeB?)
type compatibility (TypeA ∈ Contexti?)
type inference (x ∈ TypeA?)



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Type system rules (Example)

type equivalence (TypeA = TypeB?)
e.g. Is it safe to cast an integer to a char?

integer x := 26;
char a := (char)x;

type compatibility (TypeA ∈ Contexti?)
e.g. Can I add a string and a real?

string s := ‘‘foo’’;
real x := s + 5.0;

type inference (x ∈ TypeA?)
e.g. For which types of x is f defined?

let f x = x + x;;



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

What type systems are good for

Detecting errors

Enforcing abstraction

Documentation

Efficiency



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

What is type checking

Type checking is the process of ensuring that a program obeys
the language’s type compatibility rules



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Strong vs. weak typing

Strong typing

Values of one type cannot be assigned to variables of another
type.
Enables incredibly extensive static compiler checks.

Weak typing

Values of one type can be assigned to variables of another type
using implicit value conversions.



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Strong vs. weak typing (Example)

Strong typing check returns an error

type fruitsalad: integer;
type apple: integer;
type pear: integer;
apple a := 5;
pear p := 3
fruitsalad f := a + p;

Weak typing check goes on

type fruitsalad: integer;
type apple: integer;
type pear: integer;
apple a := 5;
pear p := 3
fruitsalad f := a + p; //fruitsalad = 8



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Dynamic vs. static typing

Dynamic typing

Environment infers the type of a variable/expression from the
its usage. It can happen both at runtime and compile-time.

Static typing

Programmer must indicate the type of a variable/expression
writing it in the code. It’s checked at compile-time.

Obviously, in real world they can be mixed!



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Dynamic vs. static typing (Example)

Dynamic typing:

s := ‘‘foo’’; //s is string
n := sqrt(42); //n is real

Static Typing:

string s := ‘‘foo’’; //s is string
real n := sqrt(42); //n is real



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Game of types

Non-Typed Typed

Static Dynamic

Strong

Weak



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Types in programming languages

boolean

int, long, float, double (signed/unsigned)

char (1 byte, 2 bytes)

Enumerations

Subrange (n1..n2)

Pointers

Composite types

struct
union
array



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Type cast

Type cast operation builds from an expression with type
TypeA a new value of type TypeB

Consider the following definitions:

int add(int i, int j);
int add2(int i, double j);

Ad the following calls:

add(2, 3); //Exact
add(2, (int)3.0); //Explicit cast
add2(2, 3); //Implicit cast



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Memory layout

On 32 bits architectures types require from 1 to 8 bytes

Composite types (e.g. structures) are represented chaining
constituent values together

For performance reasons compilers employ padding to
align fields to 4 bytes addresses



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Memory layout (Example)

struct element {
char name[2];
int atomicnumber;
float atomicweight;
char metallic;

};

name free free

atomicnumber

atomicweight

metallic free free free



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Problems with memory layout

C requires that fields of a struct should be displaced in the
same order of the declaration (essential with pointers!)

Not all languages behaves like this: for instance ML
doesn’t specify any order

If the compiler can reorganize fields, “holes” are
minimized: for instance packing name and metallic saves
4 bytes



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Union

Union types allow sharing the same memory area among
different types

The size of the value is the maximum of the size of the
constituents

union u {
struct element e;
int number;

};

name free free

atomicnumber

atomicweight

metallic free free free

number

free free free free

free free free free

free free free free



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Enumerate

User defined types to increase expressivity

Values of an enumerate are ordered and can be used as
indexes of arrays or collections

enum weekday {sun, mon, tue, wed, thu, fri, sat };



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Array

Array are positional collections of homogeneous data

From an abstract point of view an array is a mapping from
an index type to an element type

Array’s indexes

can be fixed (e.g. starting from 0 as in C)
can have lower and upper bound (e.g 5..10)

Array layout of memory is contiguous

int char[26]; // C/C++

var frequency : array[’a’..’z’] of integer; //Pascal



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Pointers

Not a real type, it’s a label

A pointer variable is a variable whose value is a reference
to some object

A pointer is not an address of memory. It is an high level
reference

One pointer can refer to an already existing object

A pointer can be created allocating memory for it

A pointer that was created “must” be destroyed



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Problems with pointers: memory leak

A created pointer must be destroyed to clean memory

A pointer variable when out of scope is lost

...but the pointed object is still in memory

The pointed object cannot be accessed but uses memory

{
foo pf = new foo();

}
pf // foo

��pf foo



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Problems with pointers: dangling reference

Suppose two pointers pointing to the same object

When one of the two pointers is destroyed the object is
removed from memory

...but the second pointer is a live pointer that no longer
points to a valid object

The access to the cleaned object can rise errors

foo pf1 := new foo();
foo pf2 := pf1;

delete(pf1);

pf 1 ++WWWW
foo

pf 2
33gggg

pf 1
��foo

pf 2
33gggg



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Abstract data types

According to the abstraction based view of types a type is
an interface

An ADT is a set of values and operations allowed on it

Programming languages have mechanisms to define ADT



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Abstract data types (Example)

struct node {
int val;
struct node *next;

};

struct node* next(struct node* l) { return l->next; }

struct node* initNode(struct node* l, int v) {
l->val = v; l->next = NULL; return l;

}

void append(struct node* l, int v) {
struct node p = l;
while (p->next) p = p->next;
p->next =
initNode((struct node)malloc(sizeof(struct node)),v);

}



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Abstract data types limits

C doesn’t provide any mechanism to hide the structure of
data types

A program can access next field without using the next
function

To hide data and to preserve abstraction we must use a
Class



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Class type

Class is a type constructor like struct or array

A class combines

Data (like struts)
Methods (operations on the data)

A class has two special operations to provide

Initialization
Finalization



Types
(1stPart)

Introduction

Type checking

Types in the
practice

Advanced
Types

Class type (Example)

class Node {
int val;
Node m next;
Node(int v) { val := v; }
Node next() { return m next; }
void append(int v) {

Node n := this;
while (n.m next != null) n := n.m next;
n.m next := new Node(v);

}
}


	Introduction
	Type checking
	Types in the practice
	Advanced Types

