Francesco Nidito

Programmazione Avanzata AA 2005/06



Outline

Types
(2"?Part)

One step behind

Inheritance

Casting and binding

Overloading

Reference: Micheal L. Scott, “Programming Languages
Pragmatics”, Chapter 10



Types, type systems and type checking

Types
(2"?Part)

m A type type is an abstraction system that defines
m the memory layout of data
m a set of operations that can be performed on value
belonging to that type

One step
behind

m A type system consists of

m a mechanism for defining types and associating them to
language structures

m a set of rules for: type equivalence, type compatibility and
type inference

m Type checking is the process of ensuring that a program
obeys the language’s type compatibility rules



Class type

Types
(2"?Part)

One step
behind

m Class is a type constructor like struct or array
m A class combines

m Data (like struts)
m Methods (operations on the data)

m A class has two special operations to provide

m Initialization
m Finalization



Inheritance

Types
(2"?Part)

m A class B inherits from class A (B <: A) when an object
of class A is expected an object of class B can be used
instead
Student <: Person - a student can do everything a person
can do

Inheritance

m Inheritance expresses the idea of adding features to an
existing type
Student <: Person - a Student is a Person that follows PA
lessons

m Inheritance can be single or multiple



Single inheritance

Types
(2"?Part)

Inheritance

m In single inheritance a class can extend only one class

m Very restrictive condition, it can't represent complex
systems

m Single inheritance doesn’t help expressivity



Single inheritance implementation

Types
(2"?Part)

m When class Student inherits from class Person the
memory layout of Person is stacked over Student Inheritance

m From Student we can access Person using a pointer to the
super class (super)

Student <: Person

Person
Student




Single inheritance (Example)

Types
nd
class Person { (@ e

string Name;
int SayHello() {
print ’’Hello my name is ’’.Name ;

Inheritance

}
}

class Sudent : Person {
string Course;
int SayHello() {
super.SayHello();
print ‘‘I am a ‘‘.Course.‘‘ student’’;



Multiple inheritance

Types
(2"?Part)

Inheritance

m In multiple inheritance a class can extend as many classes
as it likes

m Very expressive, it can represent complex systems

m Multiple inheritance has both conceptual and
implementation issues



Multiple inheritance implementation

Types
. . (2"?Part)
m When class JetCar inherits from class Car and class Jet

the memory layout of the JetCar is stacked with the ones
of Jet and Car

m From JetCar we can access Car of Jet using a pointer to
the super desired class

Inheritance

m We must specify the particular super class if both super
classes have a method with the same name

JetCar <: Jet , JetCar <: Car

Jet
Car
JetCar




class Jet {
void Fly() { /*x...*x/ }
}

class Car {
void Drive() { /*..x/ }
}

class JetCar: Jet, Car {
void FlyAndDrive() {
Fly(O);
Drive();
}
}



class Jet {
void Stop() { /*...x/ }
}

class Car {
void Stop() { /*..*x/ }
}

class JetCar: Jet, Car {
void Stop() {
Jet::Stop();
Car::Stop();
}
}



Multiple inheritance (diamond problem)

Types
(2"?Part)

m Suppose:
JetCar <: Jet and JetCar <: Car and Jet <: Mobile and
Car <: Mobile

m Mobile has a method called MoveTo (x,y,2)

Inheritance

Mobile

A .
Jet Car ‘
AN A

JetCar




Multiple inheritance (diamond problem)

m We can have two problems:

m Memory layout is bigger (2 copies of Mobile)
m If we have two copies of Mobile, when in JetCar we write
Mobile: :MoveTo(x,y,z) what happens?

JetCar <: Jet, JetCar <: Car
Jet <: Mobile, Car <: Mobile

Mobile(Jet)
Mobile(Car)
Jet
Car
JetCar

Types
(2"?Part)

Inheritance



Multiple inheritance solution to the diamond
problem

m C++ by default follows each inheritance path separately, (215:1)

so a JetCar object would actually contain two separate
Mobile objects. But if the inheritance from Mobile is
virtual C4++ takes care to have only one copy of Mobile

Inheritance

m Eiffel handles this situation by a select and rename
directives: Jet can have part of the interface of Mobile
and Car another part, or we can rename the method
MoveTo(x,y,z) as MoveJetTo(x,y,z) in Jet and
MoveCarTo(x,y,z) in Car

m Perl handles this by specifying the inheritance classes as
an ordered list. If Jet is specified before Car we have only
Mobile(Jet) in memory

m Python creates a classes tree that would be searched in
left-first depth-first order and then removes all but the last
occurrence of any repeated classes



Mix-in inheritance

Types
(2"?Part)

m In some languages (Java, C#), it is not possible to inherit
from multiple classes

Inheritance

m Mix-in allows only to inherit from one class but to
implement multiple interfaces

m No diamond problem!

m Partial code reuse and low expressivity (higher than single
inheritance)



Mix-in inheritance “problems”

Types
(2"?Part)

m No Implementation problems only expressivity problems
m Suppose that we want to program class JetCar (without
Mobile) in a mix-in language S

m We need to inherit from Jet and Car
m We decide to make Car an empty interface

m The implementation of the Car methods is in the JetCar
class

m If we create a new class BoatCar we need to implement all
the Car methods again.

m The problem can be partially solved encapsulating all the
methods in a Car_Implementation class and calling them
as external



Mix-in inheritance:
the story so far

Types
(2"?Part)

m Mix-in is an “old” term used in various contexts

Inheritance

m In C4++ mix-in represents the fact that one, or more, of
the inherited classes is abstract: it's like an interface but
some implemented methods are given

m Mix-in term was born with CLOS: in CLOS a mix-in is a
piece of code that can be attached on-fly to an object

m Other systems using CLOS-style mix-in are: Flavours,
Ruby, Perl 6, D, XOTcl, Python and ActionScript



m Object systems have two useful methods to use
inheritance

m Upcast
m Downcast



Upcast

Types
(2"?Part)

m Upcast provides the principal the abstraction of

inheritance: the inheriting class can be used in every

occurrence of the inherited class e o
m Each Student can perform everything a Person can do.

Student s := new Student();
Person p := s;

m It is not a real cast. The runtime simply use the Person
part of the Student memory



Downcast

Types
(2"?Part)

m Downcast permit to return from an upcast
“transformation”

m When a Student exits from school became a simple
Person but it can return to be a Student when it comes EEiE
back to school

Person p := new Student();
Student s := (Student)p;

m When a downcast is performed the subclass must be
specified because a superclass can have a large number of
subclasses

m As in upcast operation: this is not a real cast operation



m When are (Up|Down)cast operations checked?

m Upcast can be verified at compile time
m Downcast must be verified at run time



Late binding (By example)

Types
(2"?Part)
class Person {
int SayHello() { print ‘‘I am a Person’’; %}

Casting and
binding
class Student : Person {

int SayHello() { print ¢‘I am a Student’’; }

Person p := new Student();
p.SayHello(); //What does it print?



m Which method is called?

m It depends on the language:

m C++ calls Person: :SayHello()
m Java (or C#) calls Student: : SayHello ()



Late binding

Types

(2"?Part)
m The mechanism that associates the method
Student: :SayHello() to a Person object is called /ate
binding
m The main advantage of late binding is that we can create T
binding

generic code that works on classes with a common
ancestor

m A typical example is given by graphical interface classes
that inherit from a Drawable class with a paint ()

m Late binding introduces time overhead because it is
checked at run time

m In C++ we can use late binding only if we declare
Person: :SayHello() as a virtual method



Late binding implementation

Types
(2"?Part)

m How can late binding identify the method to be invoked?
m Each class using late binding we introduce a v-table
m To each virtual method is associated a slot in the v-table E.asdt.‘”ga”d
m The pointer points to the body of the method to call e
m Each instance of a class, in addition to class fields, has a
pointer to the v-table: this costs space
m V-tables can be used to have information on the type of
the object at run time: to have all the informations we
need vtables also where they are not useful



Late binding example

class Person {
int SayHello() { ... }

class Sudent :

Person {

int SayHello() { ... }

Person p := new Person();

p-SayHello();

P —| VPointer

—_—

Person VTable

— Person ::

Types
(2" Part)

Casting and
binding

SayHello()



Late binding example

class Person {
int SayHello() { ... %}
void TakeCar() { ... }

}

class Sudent :
int SayHello() { ... }

}

Student s :=
s.TakeCar();

S —

ne

Person {

w Student();

VPointer

—

Student VTable

— Person :

Types
(2"?Part)

Casting and
binding

TakeCar ()



Late binding example

class Person {
int SayHello() { ... %}
void TakeCar() { ... }

}

class Sudent :

Person {

int SayHello() { ... }

}

Person p :=
p-SayHello();

S —

new Student();

VPointer

—

Student VTable

— Student :

Types
(2"?Part)

Casting and
binding

SayHello()



Abstract methods and classes

. . Types
m Abstract methods are an high expressive system (Z"ZPart)

m A method is abstract if it is declared in a class but the
implementation is leaved to sub classes

m A class with one (or more) abstract method is called
abstract class and cannot be instantiate. Only sub classes Casting and
can be instantiated pindine

class Shape {
abstract void Draw();

¥

class Square : Shape {
void Draw() { ... 2}
3



Overloading

Types
(2"?Part)

m Overloading permits to bind more than one object to a
single name

m For instance:

class A { Overloading
int foo() { ... 2
int foo(int i) { ... }

m The name foo identifies two different methods



Overloading internals

Types

(2"?Part)
m Overloading is a compiler trick!
m This process is called name mangling
m The compiler generates a different method name for each
version of foo using the type in input (the output type
must be the same!) Overloading

m For instance: foo() becomes foo_v, and foo(int)
becomes foo_i

m When the method is invoked the compiler chooses the
appropriate version of foo

m Sometime implicit conversions can lead to an ambiguity in
the choice: a compiler error is raised



Operator overloading

Types

(2"?Part)
m Operator overloading allows to give a different semantic to
standard language operators as + and —
m In some languages the overloading of the operators is
performed in the same way of method overloading
m Conceptually the invocation of overloaded operators is Overtosding

rewritten as a method

m For instance we can create a Matrix class and define the
sum operation on it (Example in C++):

Matrix a,b,c;

c =a+ b; // operator=(c, operator+(a, b))



	One step behind
	Inheritance
	Casting and binding
	Overloading

