
Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Types (2ndPart)

Francesco Nidito

Programmazione Avanzata AA 2005/06



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Outline

1 One step behind

2 Inheritance

3 Casting and binding

4 Overloading

Reference: Micheal L. Scott, “Programming Languages
Pragmatics”, Chapter 10



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Types, type systems and type checking

A type type is an abstraction system that defines

the memory layout of data
a set of operations that can be performed on value
belonging to that type

A type system consists of

a mechanism for defining types and associating them to
language structures
a set of rules for: type equivalence, type compatibility and
type inference

Type checking is the process of ensuring that a program
obeys the language’s type compatibility rules



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Class type

Class is a type constructor like struct or array

A class combines

Data (like struts)
Methods (operations on the data)

A class has two special operations to provide

Initialization
Finalization



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Inheritance

A class B inherits from class A (B <: A) when an object
of class A is expected an object of class B can be used
instead
Student <: Person - a student can do everything a person
can do

Inheritance expresses the idea of adding features to an
existing type
Student <: Person - a Student is a Person that follows PA
lessons

Inheritance can be single or multiple



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Single inheritance

In single inheritance a class can extend only one class

Very restrictive condition, it can’t represent complex
systems

Single inheritance doesn’t help expressivity



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Single inheritance implementation

When class Student inherits from class Person the
memory layout of Person is stacked over Student

From Student we can access Person using a pointer to the
super class (super)

Student <: Person

Person

Student



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Single inheritance (Example)

class Person {
string Name;
int SayHello() {

print ’’Hello my name is ’’.Name ;
}

}

class Sudent : Person {
string Course;
int SayHello() {

super.SayHello();
print ‘‘I am a ‘‘.Course.‘‘ student’’;

}
}



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Multiple inheritance

In multiple inheritance a class can extend as many classes
as it likes

Very expressive, it can represent complex systems

Multiple inheritance has both conceptual and
implementation issues



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Multiple inheritance implementation

When class JetCar inherits from class Car and class Jet
the memory layout of the JetCar is stacked with the ones
of Jet and Car

From JetCar we can access Car of Jet using a pointer to
the super desired class

We must specify the particular super class if both super
classes have a method with the same name

JetCar <: Jet , JetCar <: Car

Jet

Car

JetCar



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Multiple inheritance (Example 1)

class Jet {
void Fly() { /*...*/ }

}

class Car {
void Drive() { /*..*/ }

}

class JetCar: Jet, Car {
void FlyAndDrive() {
Fly();
Drive();

}
}



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Multiple inheritance (Example 2)

class Jet {
void Stop() { /*...*/ }

}

class Car {
void Stop() { /*..*/ }

}

class JetCar: Jet, Car {
void Stop() {
Jet::Stop();
Car::Stop();

}
}



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Multiple inheritance (diamond problem)

Suppose:
JetCar <: Jet and JetCar <: Car and Jet <: Mobile and
Car <: Mobile

Mobile has a method called MoveTo(x,y,z)

Mobile

Jet

2 5=rrr

Car

�ai LLL

JetCar

�ai LLL
2 5=rrr



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Multiple inheritance (diamond problem)

We can have two problems:

Memory layout is bigger (2 copies of Mobile)
If we have two copies of Mobile, when in JetCar we write
Mobile::MoveTo(x,y,z) what happens?

JetCar <: Jet , JetCar <: Car
Jet <: Mobile, Car <: Mobile

Mobile(Jet)

Mobile(Car)

Jet

Car

JetCar



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Multiple inheritance solution to the diamond
problem

C++ by default follows each inheritance path separately,
so a JetCar object would actually contain two separate
Mobile objects. But if the inheritance from Mobile is
virtual C++ takes care to have only one copy of Mobile

Eiffel handles this situation by a select and rename
directives: Jet can have part of the interface of Mobile
and Car another part, or we can rename the method
MoveTo(x,y,z) as MoveJetTo(x,y,z) in Jet and
MoveCarTo(x,y,z) in Car

Perl handles this by specifying the inheritance classes as
an ordered list. If Jet is specified before Car we have only
Mobile(Jet) in memory

Python creates a classes tree that would be searched in
left-first depth-first order and then removes all but the last
occurrence of any repeated classes



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Mix-in inheritance

In some languages (Java, C#), it is not possible to inherit
from multiple classes

Mix-in allows only to inherit from one class but to
implement multiple interfaces

No diamond problem!

Partial code reuse and low expressivity (higher than single
inheritance)



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Mix-in inheritance “problems”

No Implementation problems only expressivity problems

Suppose that we want to program class JetCar (without
Mobile) in a mix-in language

We need to inherit from Jet and Car

We decide to make Car an empty interface

The implementation of the Car methods is in the JetCar
class

If we create a new class BoatCar we need to implement all
the Car methods again.

The problem can be partially solved encapsulating all the
methods in a Car Implementation class and calling them
as external



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Mix-in inheritance:
the story so far

Mix-in is an “old” term used in various contexts

In C++ mix-in represents the fact that one, or more, of
the inherited classes is abstract: it’s like an interface but
some implemented methods are given

Mix-in term was born with CLOS: in CLOS a mix-in is a
piece of code that can be attached on-fly to an object

Other systems using CLOS-style mix-in are: Flavours,
Ruby, Perl 6, D, XOTcl, Python and ActionScript



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Upcasting and downcasting

Object systems have two useful methods to use
inheritance

Upcast
Downcast



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Upcast

Upcast provides the principal the abstraction of
inheritance: the inheriting class can be used in every
occurrence of the inherited class

Each Student can perform everything a Person can do.

Student s := new Student();
Person p := s;

It is not a real cast. The runtime simply use the Person
part of the Student memory



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Downcast

Downcast permit to return from an upcast
“transformation”

When a Student exits from school became a simple
Person but it can return to be a Student when it comes
back to school

Person p := new Student();
Student s := (Student)p;

When a downcast is performed the subclass must be
specified because a superclass can have a large number of
subclasses

As in upcast operation: this is not a real cast operation



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Upcasting and downcasting internals

When are (Up|Down)cast operations checked?

Upcast can be verified at compile time
Downcast must be verified at run time



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Late binding (By example)

class Person {
int SayHello() { print ‘‘I am a Person’’; }

}

class Student : Person {
int SayHello() { print ‘‘I am a Student’’; }

}

...

Person p := new Student();
p.SayHello(); //What does it print?



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Late binding (By example)

Which method is called?

It depends on the language:

C++ calls Person::SayHello()
Java (or C#) calls Student::SayHello()



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Late binding

The mechanism that associates the method
Student::SayHello() to a Person object is called late
binding

The main advantage of late binding is that we can create
generic code that works on classes with a common
ancestor

A typical example is given by graphical interface classes
that inherit from a Drawable class with a paint()

Late binding introduces time overhead because it is
checked at run time

In C++ we can use late binding only if we declare
Person::SayHello() as a virtual method



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Late binding implementation

How can late binding identify the method to be invoked?

Each class using late binding we introduce a v-table

To each virtual method is associated a slot in the v-table
The pointer points to the body of the method to call

Each instance of a class, in addition to class fields, has a
pointer to the v-table: this costs space

V-tables can be used to have information on the type of
the object at run time: to have all the informations we
need vtables also where they are not useful



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Late binding example

class Person {
int SayHello() { ... }

}

class Sudent : Person {
int SayHello() { ... }

}

Person p := new Person();
p.SayHello();

p // VPointer // Person VTable // Person :: SayHello()



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Late binding example

class Person {
int SayHello() { ... }
void TakeCar() { ... }

}

class Sudent : Person {
int SayHello() { ... }

}

Student s := new Student();
s.TakeCar();

s // VPointer // Student VTable // Person :: TakeCar()



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Late binding example

class Person {
int SayHello() { ... }
void TakeCar() { ... }

}

class Sudent : Person {
int SayHello() { ... }

}

Person p := new Student();
p.SayHello();

s // VPointer // Student VTable // Student :: SayHello()



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Abstract methods and classes

Abstract methods are an high expressive system

A method is abstract if it is declared in a class but the
implementation is leaved to sub classes

A class with one (or more) abstract method is called
abstract class and cannot be instantiate. Only sub classes
can be instantiated

class Shape {
abstract void Draw();

}

class Square : Shape {
void Draw() { ... }

}



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Overloading

Overloading permits to bind more than one object to a
single name

For instance:

class A {
int foo() { ... }
int foo(int i) { ... }

}

The name foo identifies two different methods



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Overloading internals

Overloading is a compiler trick!

This process is called name mangling

The compiler generates a different method name for each
version of foo using the type in input (the output type
must be the same!)

For instance: foo() becomes foo v, and foo(int)
becomes foo i

When the method is invoked the compiler chooses the
appropriate version of foo

Sometime implicit conversions can lead to an ambiguity in
the choice: a compiler error is raised



Types

(2ndPart)

One step
behind

Inheritance

Casting and
binding

Overloading

Operator overloading

Operator overloading allows to give a different semantic to
standard language operators as + and −
In some languages the overloading of the operators is
performed in the same way of method overloading

Conceptually the invocation of overloaded operators is
rewritten as a method

For instance we can create a Matrix class and define the
sum operation on it (Example in C++):

Matrix a,b,c;
...
c = a + b; // operator=(c, operator+(a, b))


	One step behind
	Inheritance
	Casting and binding
	Overloading

