
Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object Thinking

Francesco Nidito

Programmazione Avanzata AA 2005/06

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Outline

1 Introduction

2 Philosophy

3 Terms

4 Techniques

5 Conclusions

Reference: David West, “Object Thinking”, Chapters 1-5, 9

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Real life example

Michael Hilzkit tells this story about the Apple’s famous visit
to the Xerox PARC:
Given this rare psychic encouragement, The Learning Research
Group warmed to their subject. They even indulged in some of
their favorite legerdemain. At one point Jobs, watching some
text scroll up the screen line by line in the its normal fashion,
remarked, “It would be nice if it moved smoothly, pixel by
pixel, like paper”.
With Ingalls at the keyboard, that was like asking a New
Orleans jazz band to play “Limehouse Blues”. He clicked the
mouse on the window displaying several lines of SmallTalk
code, made minor edit, and returned to the text, Presto! The
scrolling was now continuous.
The Apple’s engineer’s eyes bulged in astonishment

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Why does OO matter?

Object Orientation is a natural way to express concepts

Easy construction of a domain abstraction

Object Oriented languages increment productivity

It is important to learn to think like objects

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Why does OO matter?

Object Orientation is a natural way to express concepts

Easy construction of a domain abstraction

Object Oriented languages increment productivity

It is important to learn to think like objects

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Why does OO matter?

Object Orientation is a natural way to express concepts

Easy construction of a domain abstraction

Object Oriented languages increment productivity

It is important to learn to think like objects

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Caveat

Object Oriented programming is not only programming
with objects

We can write non-OO programs with Java, C++, C#

In Object Oriented programming we must think the
domain as:

A group of objects
Relations between objects
Objects using other objects

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Destroy the cathedral...

Cathedral = Old way to think objects

Customer

DateOfBirth

GetID()
SetID()

Gender
FirstName
...

...

ID

FirstName

DateOfBirth

Gender

SetID

GetID

SetGender

GetGender

ID

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

...let’s build a bazaar!

Bazaar = New way to think objects

Present self

Customer

ID self

Indicate desires
Make decisions

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object thinking = Think like an object

Traditional programmers think like computers

OO programmers must learn to think like objects

Thinking like an object is:

The object space is a community of virtual persons
We must concentrate on the problem spaced rather than
the solution space

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Virtual persons

Objects know their resources

Objects ask to other objects when something is needed

Objects do not know the internals of other objects
Objects collaborate, they do not use each other

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Problem = Solution

We must decompose a problem into a set of objects

The solution is in the interaction of objects

If the objects act as in the problem space this is the
solution

The objects simulate the problem to solve it

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Problem = Solution

We must decompose a problem into a set of objects

The solution is in the interaction of objects

If the objects act as in the problem space this is the
solution

The objects simulate the problem to solve it

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Four golden rules

Everything is an object

Simulation of the problem domain drives to object
discovery and definition

Objects must be composition enabled

Distributed cooperation and communication must replace
hierarchical centralized control as an organization
paradigm

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Traditional application (Example)

 Application

 Main

Procedure A Procedure B

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object Oriented application (Example)

Application

Object_2

Object_4

Object_1

Object_3

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is it simple?

NO!
The process of being an object thinker is not easy

You must start to think like an object and continue to
learn day by day

The code, and the style, will be better with time

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is it simple?

NO!

The process of being an object thinker is not easy

You must start to think like an object and continue to
learn day by day

The code, and the style, will be better with time

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is it simple?

NO!
The process of being an object thinker is not easy

You must start to think like an object and continue to
learn day by day

The code, and the style, will be better with time

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Terms to deal with

First of all we must define the basic terms

Class
Object
Responsibility
Message and method

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Terms to deal with

First of all we must define the basic terms

Class
Object
Responsibility
Message and method

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Class

Classes are the fundamental units of understanding

We define the world in terms of objects associated to
some class

Classes define attributes and methods of the objects of its
kind

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Class (Example)

class Integer{
int val;

void SetValue(int x){ val := x; }
int GetValue(){ return val; }
Integer +(Integer o){

Integer i := new Integer();
i.SetValue(o.GetValue()+val);
return i;

}
}

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object

An object is an instance of a class.

An object can be uniquely identified by its name

An object defines a state which is represented by the
values of its attributes at a particular time

The only way to create an application must be to compose
objects

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object

An object is an instance of a class.

An object can be uniquely identified by its name

An object defines a state which is represented by the
values of its attributes at a particular time

The only way to create an application must be to compose
objects

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object (Example)

class Integer{
int val;

void SetValue(int x){ ... }
int GetValue(){ ... }
Integer +(Integer o){ ... }

}

Integer i := new Integer(); //Object
Integer j := new Integer(); //Object

i.SetValue(2);
j.SetValue(3);

Integer k := i + j; // i.+(j)

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Responsibility

A responsibility is a service that an object can provide

If we define the world in terms of objects then

An object is everything capable to provide a limited set of
services
The only way to create an application is to compose
objects

The responsibility of an object is known also as the
interface that the object implements

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Responsibility

A responsibility is a service that an object can provide

If we define the world in terms of objects then

An object is everything capable to provide a limited set of
services

The only way to create an application is to compose
objects

The responsibility of an object is known also as the
interface that the object implements

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Responsibility

A responsibility is a service that an object can provide

If we define the world in terms of objects then

An object is everything capable to provide a limited set of
services
The only way to create an application is to compose
objects

The responsibility of an object is known also as the
interface that the object implements

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Responsibility

A responsibility is a service that an object can provide

If we define the world in terms of objects then

An object is everything capable to provide a limited set of
services
The only way to create an application is to compose
objects

The responsibility of an object is known also as the
interface that the object implements

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Responsibility (Example)

class Integer{
void SetValue(int x){ ... }
int GetValue(){ ... }
Integer +(Integer o){ ... }

}

An Integer object does only what it is intended to do:

We can set or get its value
We can perform some math operations on it

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Messages and methods

A message is a request to an object to invoke one of its
methods. A message therefore contains:

The name of the method and
The arguments of the method.

A method is associated with a class. An object invokes
one of its class methods as a reaction to the message

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Messages and methods

A message is a request to an object to invoke one of its
methods. A message therefore contains:

The name of the method and

The arguments of the method.

A method is associated with a class. An object invokes
one of its class methods as a reaction to the message

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Messages and methods

A message is a request to an object to invoke one of its
methods. A message therefore contains:

The name of the method and
The arguments of the method.

A method is associated with a class. An object invokes
one of its class methods as a reaction to the message

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Messages and methods

A message is a request to an object to invoke one of its
methods. A message therefore contains:

The name of the method and
The arguments of the method.

A method is associated with a class. An object invokes
one of its class methods as a reaction to the message

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Messages and method (Example)

class Integer{
int val;

void SetValue(int x){ val := x; }
...

}

Integer i := new Integer();
i.SetValue(42);

The last instruction must be interpreted as:
We send a message to i, the message says: “please set
your value to 42”
When the object i receives the message it performs the
operation(s) in the body of method SetValue to change
its status

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object Oriented programming: how to do it

After terms we need techniques

Relation between classes
Polymorphism

Followings are general techniques, you must adapt them to
tools that you use

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object Oriented programming: how to do it

After terms we need techniques

Relation between classes
Polymorphism

Followings are general techniques, you must adapt them to
tools that you use

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Object Oriented programming: how to do it

After terms we need techniques

Relation between classes
Polymorphism

Followings are general techniques, you must adapt them to
tools that you use

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Relations between classes

We have different ways to relate classes:

is-a-kind-of and is-a
is-part-of and has-a
uses-a and is-used-by

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Relations between classes

We have different ways to relate classes:

is-a-kind-of and is-a

is-part-of and has-a
uses-a and is-used-by

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Relations between classes

We have different ways to relate classes:

is-a-kind-of and is-a
is-part-of and has-a

uses-a and is-used-by

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Relations between classes

We have different ways to relate classes:

is-a-kind-of and is-a
is-part-of and has-a
uses-a and is-used-by

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-a-kind-of and is-a

We say that Foo class is-a-kind-of Bar class if Foo has the
same responsibilities of Bar

We say that an object f of Foo is-a b of class Bar if Foo
is-a-kind-of Bar

is-a-kind-of is a relation between classes

is-a is a relation between objects

Inheritance is the way in which a is-a-kind-of relation (and
is-a relation too) is established.

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-a-kind-of and is-a

We say that Foo class is-a-kind-of Bar class if Foo has the
same responsibilities of Bar

We say that an object f of Foo is-a b of class Bar if Foo
is-a-kind-of Bar

is-a-kind-of is a relation between classes

is-a is a relation between objects

Inheritance is the way in which a is-a-kind-of relation (and
is-a relation too) is established.

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-a-kind-of and is-a

We say that Foo class is-a-kind-of Bar class if Foo has the
same responsibilities of Bar

We say that an object f of Foo is-a b of class Bar if Foo
is-a-kind-of Bar

is-a-kind-of is a relation between classes

is-a is a relation between objects

Inheritance is the way in which a is-a-kind-of relation (and
is-a relation too) is established.

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-a-kind-of (Example)

class Integer{
void SetValue(int x){ ... }

}

class UnsignedInteger: Integer{
void SetValue(int x){

if(x >= 0){
Integer::SetValue(x);

}else{
RaiseException();

}
}
...

}

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-a (Example)

VectorOfInteger v := new VectorOfInteger();

Integer i := new Integer();
i.SetValue(-3);
v.Add(i);

UnsignedInteger u := new UnsignedInteger();
u.SetValue(42);
v.Add(u); //an UnsignedInteger is-a Integer

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-part-of and has-a

We say that Foo class is-part-of Bar class if Bar has one,
or more, attributes of type Foo

Has-a is exactly the opposite of is-part-of relation

Composition is the way in which a is-part-of relation (and
has-a relation too) is established.

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-part-of and has-a

We say that Foo class is-part-of Bar class if Bar has one,
or more, attributes of type Foo

Has-a is exactly the opposite of is-part-of relation

Composition is the way in which a is-part-of relation (and
has-a relation too) is established.

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Is-part-of and has-a (Example)

Table

Row

Cell

has-a

has-a

is-part-of

is-part-of

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Uses-a and is-used-by

We say that Foo class use-a Bar class if Foo knows how to
use an object of type Bar but with out Bar is-part-of Foo

Is-used-by is exactly the opposite of uses-a relation

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Uses-a (Example)

class Output{
...
void Print(Integer i){...}
...

}

Output o = new Output();
Integer i = new Integer();
i.SetValue(42);
o.Print(i);

The Output class knows how to manage an Integer object but
after the Print method execution there is no more trace of
object i in object o

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Polymorphism

When we send a message to an object, the object can
interpret the message in various ways

As a consequence of this multiple classes can expose the
same interface

The same message can yield many, different, responses

The sender interest moves from how a class performs
some task to what a class can perform

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Polymorphism

When we send a message to an object, the object can
interpret the message in various ways

As a consequence of this multiple classes can expose the
same interface

The same message can yield many, different, responses

The sender interest moves from how a class performs
some task to what a class can perform

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Polymorphism

When we send a message to an object, the object can
interpret the message in various ways

As a consequence of this multiple classes can expose the
same interface

The same message can yield many, different, responses

The sender interest moves from how a class performs
some task to what a class can perform

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Polymorphism

When we send a message to an object, the object can
interpret the message in various ways

As a consequence of this multiple classes can expose the
same interface

The same message can yield many, different, responses

The sender interest moves from how a class performs
some task to what a class can perform

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Polymorphism classification

Polymorphism

Universal

Ad-hoc

Parametric

Sub-type

Overloading

Coercion

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Sub-type polymorphism

Sub-type polymorphism is given by inheritance and
method overriding

With method overriding we redefine in a subclass methods
of the super class(es)

With the use of late binding we are able to dispatch the
message to the right receiver

We can use, as base classes, abstract classes

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Sub-type polymorphism

Sub-type polymorphism is given by inheritance and
method overriding

With method overriding we redefine in a subclass methods
of the super class(es)

With the use of late binding we are able to dispatch the
message to the right receiver

We can use, as base classes, abstract classes

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Sub-type polymorphism

Sub-type polymorphism is given by inheritance and
method overriding

With method overriding we redefine in a subclass methods
of the super class(es)

With the use of late binding we are able to dispatch the
message to the right receiver

We can use, as base classes, abstract classes

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Sub-type polymorphism

Sub-type polymorphism is given by inheritance and
method overriding

With method overriding we redefine in a subclass methods
of the super class(es)

With the use of late binding we are able to dispatch the
message to the right receiver

We can use, as base classes, abstract classes

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Abstract classes

Abstract classes define a set of responsibilities

Abstract classes implement only some of their
responsibilities

Other responsibilities implementation is leaved to sub
classes

In some languages (Java, C#...) classes that implement
none of their responsibilities are called interfaces

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Abstract classes

Abstract classes define a set of responsibilities

Abstract classes implement only some of their
responsibilities

Other responsibilities implementation is leaved to sub
classes

In some languages (Java, C#...) classes that implement
none of their responsibilities are called interfaces

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Abstract classes

Abstract classes define a set of responsibilities

Abstract classes implement only some of their
responsibilities

Other responsibilities implementation is leaved to sub
classes

In some languages (Java, C#...) classes that implement
none of their responsibilities are called interfaces

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Sub-type polymorphism (Example)

FireWall Rule

Rule_1 Rule_2 Rule_n. . .

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

With out sub-type polymorphism (Example)

class Rule{
type_t t;
type_t GetType(){return t;}
void SetType(type_t x){t := x;}
abstract bool MustDiscard(Message m);

}

class Rule 1: Rule{
Rule 1(){ Rule::SetType(RULE 1);}
bool MustDiscard(Message m){ ... }

}

class Rule 2: Rule{
Rule 2(){ Rule::SetType(RULE 2);}
bool MustDiscard(Message m){ ... }

}

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

With out sub-type polymorphism (Example 2)

class FireWall{
Rule rule[N];
int rulesnumber;
...
void AppendRule(Rule r){ ... }
bool MustDiscard(Message m){

bool res = false; int i = 0;
while(i < rulesnumber){

if(rule[i].GetType() = RULE 1){
res = ((Rule 1)rule[i]).MustDiscard(m);
if(res = true){break;}

}elsif(...){...}
...

}
return res;

}
}

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

With sub-type polymorphism (Example)

class Rule{
abstract bool MustDiscard(Message m);

}

class Rule 1: Rule{
bool MustDiscard(Message m){ ... }

}

class Rule 2: Rule{
bool MustDiscard(Message m){ ... }

}

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

With out sub-type polymorphism (Example 2)

class FireWall{
Rule rule[N];
int rulesnumber;
...
void AppendRule(Rule r){ ... }
bool MustDiscard(Message m){

bool res = false; int i = 0;
while(i < rulesnumber){

res = rule[i].MustDiscard(m);
if(res = true){

break;
}

}
return res;

}
}

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Parametric polymorphism

With parametric polymorphism we are able to write
generic code

Generic coding permits to write one piece of code for
multiple types

C++ templates are an example of parametric
polymorphism

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Parametric polymorphism

With parametric polymorphism we are able to write
generic code

Generic coding permits to write one piece of code for
multiple types

C++ templates are an example of parametric
polymorphism

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Parametric polymorphism

With parametric polymorphism we are able to write
generic code

Generic coding permits to write one piece of code for
multiple types

C++ templates are an example of parametric
polymorphism

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Parametric polymorphism (Example)

class Buffer of T{
T v[N];

void AddAt(int idx, T val){
if(idx < N){

v[idx] := val;
}else{

RaiseException();
}

}
}

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Overloading polymorphism

With overloading polymorphism we are able to write
multiple versions of the same method with different
signature

The compiler dispatch the message to the right method
using the type information

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Overloading polymorphism

With overloading polymorphism we are able to write
multiple versions of the same method with different
signature

The compiler dispatch the message to the right method
using the type information

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Overloading polymorphism (Example)

class Output{
void Print(int i){...}
void Print(string s){...}
void Print(real r){...}

}

...

Output o = new Output();
o.Print(42);
o.Print(‘‘foo’’);
o.Print(5.0);

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Coercion polymorphism

With coercion polymorphism we are able to perform
automatic type conversions

We are able to do a kind of overloading polymorphism in a
implicit way

In C++ we can use operator overloading with cast
operators to perform automatic cast

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Coercion polymorphism

With coercion polymorphism we are able to perform
automatic type conversions

We are able to do a kind of overloading polymorphism in a
implicit way

In C++ we can use operator overloading with cast
operators to perform automatic cast

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Coercion polymorphism

With coercion polymorphism we are able to perform
automatic type conversions

We are able to do a kind of overloading polymorphism in a
implicit way

In C++ we can use operator overloading with cast
operators to perform automatic cast

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Coercion polymorphism (Example)

class Real{
real val;

void SetValue(real r){val := r}
}

Real r = new Real();
r.SetValue(5.0);
r.SetValue(42);//42 -> 42.0

The effect is similar to the one in which we define
SetValue(int) in the Real class.

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Conclusions

This slides are not enough

The only important thing is to begin to think like objects

The only way to learn object thinking is to practice and to
apply the concepts seen in this lecture

Good work!

Object
Thinking

Introduction

Philosophy

Terms

Techniques

Conclusions

Conclusions

This slides are not enough

The only important thing is to begin to think like objects

The only way to learn object thinking is to practice and to
apply the concepts seen in this lecture

Good work!

	Introduction
	Philosophy
	Terms
	Techniques
	Conclusions

