
JavaSharedDataToolkitUserGuide
Thisisatoolkitdefinedtosupporthighlyinteractive,collaborative
applicationswrittenintheJavaprogramminglanguage.

Version1.5 April 15,1999

Pleasesendtechnicalcommentsonthisuserguideto:
jsdt-interest@sun.com

RichBurridge,StaffEngineer
SunMicrosystems,Inc.
2550 Garcia Avenue

Mountain View, CA 94043 U.S.A.

408-343-1400

JavaSoft

Please

Recycle

 Copyright 1998, Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94043 U.S.A.

All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR

52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

PATENT NOTICE

The information described in this document may be protected by one or more U.S. patents, foreign patents, or pending

applications.

TRADEMARK NOTICE

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, HotJava, HotJava Views, the Java Coffee Cup logo, Java

WorkShop, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris

sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,

Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, and Visual Java are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX ® is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Adobe ® is a registered trademark of Adobe Systems, Inc.

Netscape Navigator™ is a trademark of Netscape Communications Corporation.

All other product names mentioned herein are the trademarks of their respective owners.

WARRANTY

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW

EDITIONS OF THE DOCUMENT. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE

PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Contents
1. Introduction . 8

1.1 What Is Collaborative Computing? 8

1.2 Abstract . 11

1.3 Overview. 11

2. Getting Started . 12

2.1 Overview. 12

2.2 URLString . 12

2.3 Registry . 14

2.3.1 RegistryFactory. 14

2.4 Client . 16

2.5 ClientFactory . 17

2.6 Session . 19

2.6.1 SessionFactory . 19

2.6.2 Joining a Session. 22

2.6.3 Closing a Session . 22

2.7 Channel . 22

2.8 Channel Consumer . 25

2.9 Data . 26

2.9.1 Sending Data. 27

2.9.2 Receiving Data . 28

2.9.3 Sending a Java Object . 30

2.10 ByteArray . 31

2.11 Token . 34
iv

2.12 Manageable Objects . 38

2.12.1 Getting a Manageable Objects Name. 38

2.12.2 Who’s Joined a Manageable Object 38

2.12.3 Joining a Manageable Object . 39

2.12.4 Leaving a Manageable Object . 39

2.12.5 Customizing a Listeners Events. 40

2.12.6 Customizing a Managers Events. 40

2.12.7 Destroying a Manageable Object 41

2.12.8 Inviting and Expelling Clients 41

3. Managers . 44

3.1 Overview. 44

3.2 Authentication . 44

3.3 Session Manager. 46

3.4 Channel Manager . 48

3.5 ByteArray Manager . 49

3.6 Token Manager . 50

4. Listeners . 52

4.1 Overview. 52

4.2 Session Listener . 53

4.3 Channel Listener . 53

4.4 ByteArray Listener . 54

4.5 Token Listener . 54

4.6 Client Listener . 55

5. Events. 56

5.1 Overview. 56

5.2 Session Event . 56

5.3 Channel Event . 57

5.4 ByteArray Event . 58

5.5 Token Event . 58

5.6 Client Event . 59

6. Adaptors . 60

6.1 Overview. 60

6.2 Handling ByteArray Value Changes. 60

6.3 Giving a Token. 61
v Java Shared Data Toolkit User Guide—April 15, 1999

7. Exceptions . 66

7.1 Overview. 66

7.2 Exception Types . 66

8. Implementations . 70

8.1 Overview . 70

8.2 Socket . 70

8.2.1 Limitations . 70

8.2.2 SSL Support . 71

8.3 HTTP . 71

8.3.1 Limitations . 71

8.3.2 Working through firewalls . 72

8.4 LRMP . 73

8.4.1 Limitations . 73

8.4.2 Registry Usage . 73

8.4.3 Trouble-shooting . 74

8.5 RMI . 74

8.5.1 Limitations . 74

8.6 Configurable Options . 74

8.6.1 giveTime . 75

8.6.2 httpTunnelPort . 75

8.6.3 maxQueueSize . 75

8.6.4 maxThreadPoolSize . 75

8.6.5 pingPeriod. 75

8.6.6 registryAddress . 76

8.6.7 registryPort . 76

8.6.8 registryTime . 76

8.6.9 showMessage . 76

8.6.10 showStack . 76

8.6.11 socketFactoryClass . 77

8.6.12 SSLCipher . 77

8.6.13 timeoutPeriod . 77

8.6.14 TTL. 78
Contents vi

vii Java Shared Data Toolkit User Guide—April 15, 1999

Introduction 1
1.1 What Is Collaborative Computing?
Collaborative computing means different things to different people. Some of

the areas covered are:

• Application Sharing

– Takes an existing single-user application and makes it shareable

– Broadcasting graphics, mouse movements, and edits to all participants

– Input focus control sharing, floor control

– Telepointers and “Master” pointer

– Integrated with audio, video, text chat connections (session management)

• Multi-User Application Toolkits

– Enabling developers to create multi-user applications

– Shared widgets

– Multiple views of shared space (radar views, WYSIWID, miniature)

– Multi-user scrollbars, presenting each user’s viewing area

• Interactive Desktop Conferencing

– Setting up sessions, audio, video, shared application connections

– Adding late joiners, more than 2-way connections

– Migrating to other ways of interaction (asynchronous, subgroups)
8

1

– Integration of other media (phone conference, PictureTel)

• Distributed Presentations over the Net

– This involves broadcasting a presentation via audio, video, and electronic

slides to participants at their computer desktops, and allowing the

audience to interact with the speaker and other audience members

– Multicasting audio, video, graphics, shared text

– Enabling audio, video, shared text, graphic feeback

– Enabling side conversations among audience members

– Shared widgets (poll meters)

– Large scale (100’s to 1000’s) and asymmetric (mostly 1 to many)

– Recording and playing back events is also of interest

• People Objects

– A standardized way of representing contact information for people,

“electronic business card”

– Making it easy to find people, establish contact with them, coordinate

with their schedules

– Easily and flexibly identifying and forming groups (e.g., creating mail

distribution lists by collecting people objects)

– Attaching people objects to all electronic contributions, so it is easy to

contact the person that is behind the electronic information

– Beyond static information (address, phone number), also represent

dynamic information (what kind of activity users are doing, if they’re

out of the office)

• Awareness

– Being aware of other people that you work with in a way that enables

impromptu, unintended encounters with them

– Need information about where users are, what they’re doing

– Knowing activity status of others’ machines, devices, peripherals

– Upon becoming aware of someone you want to contact, it must be easy

to migrate to interactive conferencing or communication

• Virtual Worlds
9 Java Shared Data Toolkit User Guide —April 15, 1999

1

– Creating a virtual place populated with avatars that can navigate and

interact with other people and objects in the environenment

– Persistent places

– Containment and tracking of objects

– User extensible

– Shared video and audio, spatialized audio, selective groupings of users

– Multi-user text chat, MOO

• Workflow

– Coordinating asynchronous transfer and development of information

– Version control

– User permissions

– Synchronization

– Notification of new material

– Group calendaring

• Social Filtering

– Beyond just providing recommendations from a large database, trying

to match people’s interests to provide tailored recommendations from

others with similar interests

– This probably involves specifying API’s for applications to consult

with other applications and other people objects

– Probably also involves API’s for agents

• Computer-Augmented Meeting Rooms/Group Decision Support Systems

(GDSS)

– Enables groups to meet in a room outfitted with a large shared

whiteboard device networked with individual workstations and personal

devices

– Device integration (Liveboard, workstation, PDA)

– Integrating multiple voting, organizing tools
Introduction—April 15, 1999 10

1

1.2 Abstract
This toolkit has been defined to support highly interactive, collaborative

applications. It provides the basic abstraction of a session (i.e., a group of

objects associated with some common communications pattern), and supports

full-duplex multipoint communication among an arbitrary number of

connected application entities -- all over a variety of different types of

networks. In addition, this tookit provides efficient support of multicast

message communications, the ability to ensure uniformly sequenced message

delivery and a token-based distributed synchronization mechanism. It also

provides the ability to share byte arrays amongst the members of a session.

1.3 Overview
The primary functionality provided by the communications mechanism

described here is the ability for collaboration-aware code in the Java™
programming language, to send data to all (or a subset) of the participants

within a communications session. This is accomplished by way of various send

methods. The ability to share byte arrays amongst the various member of the

session is also provided. In addition, a token mechanism is included which

provides the basis for the construction of a wide range of application-level

synchronization facilities e.g., the ability to ensure mutually exclusive access to

a resource, to perform distributed, multi-application, atomic signalling, etc.

It is intended that this toolkit provide a common interface for general multi-

party communications, beneath which a wide variety of implementation

technologies can be employed. In particular, the specific protocol stack used to

implement the functionality defined by this toolkit, as well as the negotiation

process used to select a specific protocol, are not visible to the user of this

interface. Therefore, a range of different protocols can be hidden within the

implementation of this interface (including standards-based multi-party

communications protocols (e.g., T.12x), custom protocols based on standard

networking interfaces (e.g., TCP/IP), and arbitrary proprietary protocols).

The definition of this interface involved an explicit effort to make use of as

many existing concepts from the Java technology as possible -- most notably,

perhaps, the event model from the JDK™ 1.1 release. Also, where possible,

this interface has borrowed text, ideas, and definitions from the ITU T.122

recommendation for Multipoint Communication Service for Audiographics

and Audiovisual Conferencing Services Definition.
11 Java Shared Data Toolkit User Guide —April 15, 1999

GettingStarted 2
2.1 Overview
There are various components that make up a JSDT application. This section

describes them all, introducing them in the order you are likely to encounter

them. For more information on each JSDT class and the methods it offers,

please also review the associated JavaDoc documentation. The JSDT

distribution also comes with several complete examples which include source

code. These are a good alternative source of information to see how to put all

this together.

2.2 URLString
As with all types of collaborative environments, there needs to be some way

for each application to initially rendezvous, so that data can be shared. The

JSDT group rendezvous point is a Session object, and a special kind of URL

string of the form:

 jsdt:// <server> : <port> / <impl> /Session/ <name>

is used, where:

<server> is the name of the server computer for this JSDT Session.

<port> is the port number to use for connections.

<impl> is the implementation type.

<name> is the name of the Session.
12

2

Alternatively, an IP address can be supplied as the name of the server

computer. In fact, this is the way of specifying the server name for multicast

JSDT implementations.

A URLString class is provided which is used to create these special URL

strings from their component parts. It can also be used to extract out the

individual parts of a URLString.

There is typically two parts to a JSDT application: the server and one or more

proxies. The server is a process that will receive messages from the proxies,

process them, and send out further messages to the other proxies or a reply to

the proxy that sent the initial message. The server is always started first.

JSDT comes with four implementation types:

• socket - uses TCP/IP sockets.

• http - uses HTTP commands.

• lrmp - uses a light weight reliable multicast package (LRMP).

• rmi - uses remote method invocation calls (RMI).

Each implementation type uses a different transport protocol.

The URLString class contains a static convenience method for creating these

Session URL Strings. It is:

public static URLString
createSessionURL(String hostName, int port,
 String connectionType, String sessionName);

So, for example, a URLString for a chat Session could be created with:

URLString urlString =
 URLString.createSessionURL(“stard.Eng.Sun.COM”, 3355,
 “socket”, “chatSession”);

Internally, this would be equivalent to:

“jsdt://stard.Eng.Sun.COM:3355/socket/Session/chatSession”

Note that the URL String is encapsulated in a URLString object, not a

java.net.URL object.

Multiple Sessions can use the same <server>:<port> pair. Communication

between the server and its proxies for each of those Sessions will be

multiplexed over the same connection.
13 Java Shared Data Toolkit User Guide —April 15, 1999

2

It is also possible to contact a Client that has registered itself with the Registry

(see Section 2.12.8, “Inviting and Expelling Clients”).

2.3 Registry
The information for each Session needs to be kept somewhere that is easily

accessable to applications. This is where the Registry fits in. The Registry runs

in its own Java runtime environment on the host that is the server for each

JSDT Session or Client. The Registry contains a transient database that maps

names to JSDT objects. There are two types of JSDT object that can be stored in

the Registry; a Session and a Client. When the computer starts up, the Registry

database is empty. The names stored in the Registry are pure and are not

parsed. A collaborative service storing itself in the Registry may want to prefix

the name of the service by a package name (although this is not required), to

reduce name collisions in the Registry.

By default, the JSDT Registry uses port 4561 to communicate with JSDT

applications.

Starting the Registry can be done separately, in other words:

system% java com.sun.media.jsdt.$(TYPE).Registry

where $(TYPE) is the implementation type you are using for your

collaboration (one of “socket”, “http”, “lrmp” or “rmi”).

For example:

system% java com.sun.media.jsdt.socket.Registry

Or you can use the RegistryFactory class to start the Registry.

2.3.1 RegistryFactory

If you wish to start a Registry of the appropriate type from within your JSDT

server application, then you can use the RegistryFactory class.

The RegistryFactory class has six public methods:

public static void
startRegistry(String registryType)
 throws RegistryExistsException, NoRegistryException;

public static void
Getting Started—April 15, 1998 14

2

startRegistry(String registryType, int port)
 throws RegistryExistsException, NoRegistryException;

public static void
stopRegistry(String registryType)
 throws NoRegistryException;

public static void
stopRegistry(String registryType, int port)
 throws NoRegistryException;

public static boolean
registryExists(String registryType)
 throws NoRegistryException;

public static boolean
registryExists(String registryType, int port)
 throws NoRegistryException;

If a port number is not specified, then the current value of the

com.sun.media.jsdt.impl.JSDTObject.registryPort variable will be used.

You need to know the implementation type you will be using. You can

determine if a Registry of the appropriate implementation type is running

using one of the registryExists methods. If it’s not running you can start it with

one of the startRegistry methods. For example:

import com.sun.media.jsdt.*;

String type = “socket”;

try {
 if (RegistryFactory.registryExists(type) == false) {
 RegistryFactory.startRegistry(type);
 }
} catch (NoRegistryException nre) {

System.out.println(“Couldn’t start a Registry of this type.”);
} catch (RegistryExistException ree) {
 System.out.println(“The Registry is already running.”);
}

The first thing to note here is the import line in the example above. This

imports all the class files for the com.sun.media.jsdt package. You will need
15 Java Shared Data Toolkit User Guide —April 15, 1999

2

this whenever you are writing JSDT code. This line will be omitted in the rest

of the coding examples.

Note also that various JSDT methods throw different exceptions. We need to

catch these exceptions, and handle them appropriately. More on exceptions in a

later chapter.

There is one big catch with starting a Registry using one of the startRegistry

methods. If the process that called startRegistry is terminated, the Registry

process is terminated also. This isn’t a problem if there is only one type of JSDT

application using Sessions or Clients within the Registry, but if others were

using it, they will no longer work. The workaround in this case is to start the

Registry as a separate process.

2.4 Client
A Client is an object which is part of a JSDT application or applet and is a

participant in an instance of multiparty communications. Once properly

associated with one another (see Section 2.6, “Session”), related Clients can

transfer data in a point-to-point or multipoint fashion.

A Client object can be the source or the destination of the data which is being

exchanged in an instance of communication. It is also used when any kind of

authentication is needed.

Any number of objects in an applet or application in the Java programming

language, can be defined to be Client objects (with respect to this multiparty

communications toolkit).

The Client interface needs to be implemented by any object that is going to

be a participant in a Session. A Client declares two methods:

public Object authenticate(AuthenticationInfo info);

public String getName();

The authenticate method is used for authentication purposed by the Manager

of any managed objects (see Chapter 3, “Managers”). If your Session is not

managed, then you can just return null here. The getName method needs to

return a String which will be the name of this Client. It will need to be unique

within any object the Client joins. It cannot be null. So a minimal

implementation of a class which implements Client would look something like:

public class
Getting Started—April 15, 1998 16

2

ExampleClient implements Client {

 private String name;

 public
 ExampleClient(String name) {
 this.name = name;
 }

 public Object
 authenticate(AuthenticationInfo info) {
 return(null);
 }

 public String
 getName() {
 return(name);
 }
}

Instantiating such an object would be something like:

Client client = new ExampleClient(“Jane”);

2.5 ClientFactory
JSDT provides a factory class for creating special Clients. These don’t just

implement the Client interface; they are also capable of receiving messages

sent to them, and processing them appropriately. They are used primarily to

invite or expel a Client from a Manageable object (see Section 2.12.8, “Inviting

and Expelling Clients), or to give a Token to another Client (see Section 6.1,

“Giving a Token).

As well as being able to store references to Sessions in the Registry, Client

references can also be placed there. These references can be looked up to get a

handle to that Client.

The format of the URL String for a Client is:

 jsdt:// <server> : <port> / <impl> /Client/ <name>

where:

<server> is the name of the computer that will act as the server for this JSDT

Client.
17 Java Shared Data Toolkit User Guide —April 15, 1999

2

<port> is the port number to use for connections.

<impl> is the implementation type.

<name> is the name of the Client. The name used here must be the same as that

return by doing a Client.getName() method call, otherwise an

InvalidClientException is thrown.

The URLString class contains a static convenience method for creating these

Client URL Strings. It is:

public static URLString
createClientURL(String hostName, int port,
 String connectionType, String clientName);

So, for example, a URLString for a special Client called “fredClient” could be

created with:

URLString urlString =
 URLString.createClientURL(“capra.Eng.Sun.COM”, 4477,
 “socket”, “fredClient”);

Internally, this would be equivalent to:

“jsdt://capra.Eng.Sun.COM:4477/socket/Client/fredClient”

You can place one of these special Clients in the Registry by using the

ClientFactory.createClient method. This looks like:

public static void
createClient(URLString url, Client client, ClientListener listener)
 throws ConnectionException, InvalidClientException,
 InvalidURLException, NoRegistryException,
 NoSuchHostException, NoSuchClientException,
 PortInUseException, TimedOutException;

If you need to remove that Client entry from the Registry, use the

Naming.unbind method which look like:

public static void
Naming.unbind(URLString url)
 throws ConnectionException, NoRegistryException,
 NoSuchHostException, InvalidURLException,
 NotBoundException, TimedOutException;
Getting Started—April 15, 1998 18

2

2.6 Session
A Session is a collection of related Clients which can exchange data via

defined communications paths (see Section 2.7, “Channel” and Section 2.9,

“Data”). The Session maintains the state associated with the collection of

clients and their associated communications paths, and may interact with an

object which encapsulates a defined session management policy (see Manager

below). An application or applet can have multiple Client objects associated

with the same (or different) Session objects.

Within a Session, Clients can use ByteArrays, Channels and Tokens to share

data.

A Session can be used to:

• create ByteArrays, Channels or Tokens.

• determine if a ByteArray, Channel or Token exists.

• determine if a ByteArray, Channel or Token is managed.

• determine which ByteArrays, Channels or Tokens a Client has joined.

• list it’s ByteArrays, Channels or Tokens.

• add or remove a Session Listener (see Section 4.2, “Session Listener”).

• close the connection to the server.

A Session is also a Manageable object, the same as ByteArrays, Channels and

Tokens (see Section 2.12, “Manageable Objects”). There are several operations

that are common to these four types of objects which are described here.

Before a JSDT application can use any of these Session methods, it must first

obtain a reference to that Session. This is where the SessionFactory comes in.

2.6.1 SessionFactory

The SessionFactory class contains the following methods:

public static Session
createSession(Client client, URLString url, boolean autoJoin)
throws ConnectionException, InvalidClientException,
 InvalidURLException, NameInUseException,
 NoSuchClientException, NoSuchHostException,
 NoRegistryException, NoSuchSessionException,
 PermissionDeniedException, PortInUseException,
 TimedOutException;

public static Session
19 Java Shared Data Toolkit User Guide —April 15, 1999

2

createSession(URLString url, SessionManager sessionManager)
throws ConnectionException, NoRegistryException,
 NoSuchHostException, InvalidURLException,
 NoSuchSessionException, ManagerExistsException,
 PortInUseException;

public static boolean
sessionExists(URLString url)
throws ConnectionException, NoSuchHostException,
 NoRegistryException, InvalidURLException,
 PortInUseException, TimedOutException;

public static boolean
sessionManaged(URLString url)
throws ConnectionException, NoSuchHostException,
 NoRegistryException, NoSuchSessionException,
 InvalidURLException, TimedOutException;

Clients can get a reference to a Session and can automatically join it with the

SessionFactory.createSession method. This is used to provide a means of

returning a reference to the Session without having to worry about whether it

already exists. The first call to createSession for a given URLString will bind a

Session in the Registry using the Naming classes bind method. Future calls to

createSession will detect that that Session is already known to the Registry

service, and provide a local reference to it using the Naming classes lookup

method.

Because of the way this works, a JSDT server should always be the first

application to call the SessionFactory createSession method for each Session.

You can use the sessionExists method to determine if a Session (and by

definition, the server that runs it) already exists.

Here’s an example of how to get a reference to a Session, from a proxy JSDT

application, first making sure that the server has started. In this example, the

client also automatically joins the Session.

boolean created = false;
Client client = new ExampleClient(“jill”);
Session session = null;
URLString url = URLString.createSessionURL(“stard”, 4461,
 “socket”, “wbSession”);

try {
 while (created == false) {

 if (SessionFactory.sessionExists(url) {
Getting Started—April 15, 1998 20

2

session = SessionFactory.createSession(client, url, true);
 created = true;

 } else {
 try {

 Thread.sleep(5000);
 } catch (InterruptedException e) {

 }
 }
 }

} catch (JSDTException e) {
 System.out.println(“Couldn’t create the Session.”);
}

Note that all JSDT exceptions are derived from a common parent class

JSDTException. Sometimes it’s easier to just catch that single exception type,

rather than try to handle each exception type individually. Other times, you

might wish to catch a specific JSDT exception, handling it in a certain way, and

then catch the rest of them, and do some kind of default exception processing.

For example, the following code section will check to see if the port number

used in the Session URL is already in use. If so, it will increment it, and try

again until it successfully creates the Session (or fails for some other reason). A

PortInUseException typically means that some other application already has a

server socket on that particular port number. You can only have one server

socket per port.

int portNo = 4461;
boolean created = false;
Client client = new ExampleClient(“jack”);
Session session = null;

try {
 while (created == false) {
 try {

 URLString url = URLString.createSessionURL(“stard”,
 portNo, “socket”, “chatSession”);
 session = SessionFactory.createSession(client,
 url, true);
 created = true;

 } catch {PortInUseException piue) {
 portNo++;
 }

 }
} catch (JSDTException e) {
 System.out.println(“Couldn’t create the Session.”);
21 Java Shared Data Toolkit User Guide —April 15, 1999

2

}

2.6.2 Joining a Session

Before a Client can share data, it needs to join the Session it’s just got a

reference to. As we saw in the last section, this can be done at Session creation

time, or it can be achieved with the Session join method. Actually the join

method is in the Manageable class, but Session is subclassed from

Manageable (see Section 2.12, “Manageable Objects”).

The Session will typically have multiple Clients (either at the same site or at

other sites). An application or applet can have multiple Clients in the same

Session. Each Client might be handling a different kind of data (ie. audio vs

video). A Client can be a member of multiple Sessions.

Here’s some sample code for joining an unmanaged Session you already have

a reference to:

Client client;
Session session;

try {
 session.join(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t join Session.”);
}

2.6.3 Closing a Session

When you no longer want to reference a Session, you should use the

Session.close method to terminate your association with it. This tidies up any

resources that have been created for you, and closes the Session connection to

the Server.

JSDT applets running in browsers specifically need to do this to terminate the

specially created threads associated with that Session.

2.7 Channel
A Channel is a specific instance of a potentially multi-party communications

path between two or more Clients within a given Session.
Getting Started—April 15, 1998 22

2

All Client objects which register an interest in receiving from a given

Channel will be given Data sent on that Channel (see Section 2.8, “Channel

Consumer”).

Any Client which possesses an object reference to a Channel is able to send

Data on the given Channel, and a Client can have references to multiple

different Channels.

A Channel can be used to:

• add or remove a Channel listener (see Section 4.3, “Channel Listener”).

• add or remove a Channel consumer (see Section 2.8, “Channel Consumer”).

• list all the Clients that are consuming this Channel.

• determine if the channel is ordered and/or reliable.

• allow a Client to join it in a specific mode.

• determine if data is available, and receive it synchronously.

• send data to all Clients, all other Clients or a single Client.

Once the Session setup and Client attachment is completed, the last step to

be performed before Data can be exchanged between all the members in a

multipoint fashion, is to join the right combination of interaction Channels.

Channels are session-wide addresses. Every client of a session can join a

Channel to receive data sent to it, and by joining an appropriate combination

of Channels, and by consuming them, a Client can choose to receive Data sent

to these Channels and ignore Data sent to other Channels.

Clients get a reference to a Channel and can automatically join it with the

Session.createChannel method. This is used to provide a means of returning a

reference to the Channel without having to worry about whether it already

exists. The first call to createChannel for a particular Channel name will create

a session-wide reference to it in the server. Future calls will return that

reference.

You can use the Session.channelExists method to check to see if a Channel

with a given name already exists.

Clients can join a Channel in one of three modes:

• Channel.READONLY

• Channel.WRITEONLY

• Channel.READWRITE
23 Java Shared Data Toolkit User Guide —April 15, 1999

2

Clients joining in Channel.READONLY mode cannot send Data over the

Channel. Clients joining in Channel.WRITEONLY mode cannot receive Data

over the Channel. The default mode is Channel.READWRITE.

Here’s some example code to create and automatically join a Channel in

Channel.READWRITE mode:

Session session;
Client client;
Channel channel;

try {
 channel = session.createChannel(client, “ChatChannel”,
 true, true, true);
} catch (JSDTException e) {
 System.out.print(“Couldn’t create and join the Channel.”);
}

The five parameters to the createChannel call are:

• client - the Client that will be creating and potentially joining the

Channel.

• name - the name of the Channel to create.

• reliable - indicates whether the channel is reliable. In other words

whether data delivery is guaranteed.

• ordered - indicates whether data sent over the channel arrives in the same

order it was sent.

• autoJoin - indicates if the Client is automatically joined to the

Channel when it’s created.

There is no reason why, a Client couldn’t create a Channel at one point, then

join it at a later date. Here’s some sample code that takes this approach:

Session session;
Client client;
Channel channel;

try {
 channel = session.createChannel(client, “ChatChannel”,
 true, true, false);
 ...
 channel.join(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t create and join the Channel.”);
}

Getting Started—April 15, 1998 24

2

Before a Client can send or receive data, it must join the Channel. It must also

join the Session that the Channel was created in before it can join the Channel.

2.8 Channel Consumer
A Channel Consumer is a Client object which has registered its interest in

receiving Data sent over a given Channel.

Any Client can add one or more Channel Consumers, and it is possible for a

given Client object to be a Consumer of multiple Channels at the same time.

Data received in this way will arrive at the Consumer in an asynchronous

manner. Data can also be received synchronously (see Section 2.9.2, “Receiving

Data”).

The ChannelConsumer interface needs to be implemented by any object that

wants to receive Data asynchronously sent over a Channel. A Channel

Consumer declares one method:

public void dataReceived(Data data);

There is no reason why a JSDT application cannot have an object that

implements more than one interface (for example Client and

ChannelConsumer). This is quite common.

A minimal implementation of a class which just implements

ChannelConsumer would look something like:

public class
ExampleConsumer implements ChannelConsumer {

 public synchronized void
 dataReceived(Data data) {
 ...
 }
}

Instantiating such an object, and adding it as a consumer on a Channel, for

example:

Channel channel;
Client client;
ChannelConsumer consumer;

try {
25 Java Shared Data Toolkit User Guide —April 15, 1999

2

 consumer = new ExampleConsumer();
 channel.addConsumer(client, consumer);
} catch (Exception e) {
 System.out.print(“Could not add Channel Consumer.”);
}

Note the use of the synchronized keyword in the dataReceived method

declaration in the example class above. This is needed to prevent second or

subsequent calls to dataReceived overwriting the Data for the first call. You

need to make sure that you’ve fully finished processing each Data object before

you process the next one.

2.9 Data
Data is a discrete unit of data (array of bytes) that is sent by a Client over a

Channel to all of the Clients which have currently registered an interest in

receiving data on the given Channel (see Section 2.8, “Channel Consumer”).

A Data object contains the following:

• an array of bytes (the data).

• a length value (the length of the array of bytes).

• a priority.

• the name of the Client that sent this Data

• the Channel the Data was sent over.

Note that using the serialization capabilities of Java technology, a Data object

can contain any other kind of object in the Java programming language (“Java

object”), and be easily marshalled into an array of bytes at the sending end,

and unmarshalled into the original Java object at the receiving end. An

example of this is given below:

The Data class provides constructors for creating a Data object from:

• an array of bytes.

• an array of bytes and a given length.

• a String object

• a Java object. This Java object must be serializable.

There are four Data priority levels:

• Channel.TOP_PRIORITY

• Channel.HIGH_PRIORITY

• Channel.MEDIUM_PRIORITY

• Channel.LOW_PRIORITY
Getting Started—April 15, 1998 26

2

The default priority level is Channel.MEDIUM_PRIORITY.

2.9.1 Sending Data

The Channel.send method provides the “one-to-many” communication, which

includes point-to-point as a particular case. The sequencing of Data sent from

one sender on one Channel at one priority is maintained identically at all

receivers.

The Channel class provides three send methods:

public void
sendToAll(Client sendingClient, Data data)
throws ConnectionException, InvalidClientException,
 NoSuchChannelException, NoSuchClientException,
 NoSuchSessionException, PermissionDeniedException,
 TimedOutException;

public void
sendToOthers(Client sendingClient, Data data)
throws ConnectionException, InvalidClientException,
 NoSuchChannelException, NoSuchClientException,
 PermissionDeniedException, TimedOutException;

public void
sendToClient(Client sendingClient,
 String receivingClientName, Data data)
throws ConnectionException, InvalidClientException,
 NoSuchChannelException, NoSuchClientException,
 NoSuchConsumerException, PermissionDeniedException,
 TimedOutException;

The sendToAll method is used to send Data to all Clients who are consuming

this Channel. If the sender is a consumer of this Channel, then it too will

receive the Data.

The sendToOthers method is used to send Data to other Clients consuming

this Channel. The sender (irrespective of whether it’s a consumer of this

channel) will not receive the Data.

The sendToClient method is used to send Data to a single Client consuming

this Channel.

Here’s an example of sending a String as a Data object over a Channel to all

consumers:
27 Java Shared Data Toolkit User Guide —April 15, 1999

2

Channel channel;
Client client;
String message = “Hello World”;

try {
 Data data = new Data(message);
 channel.sendToAll(client, data);
} catch (JSDTException e) {
 System.out.println(“Couldn’t send Data over Channel.”);
}

2.9.2 Receiving Data

Data can be received over a Channel both asynchronously and synchronously.

If you have setup a Channel Consumer (see Section 2.8, “Channel Consumer”)

and Data has been sent over a Channel to you, then the dataReceived method

of that Channel Consumer will be called when the Data is received.

The Data class provides convenience methods to get the contents of the Data

object as:

• an array of bytes.

• a String object

• a Java object.

Using the sendToAll example from the section above, a Channel Consumer

could receive this and unpack it as a String with:

public synchronized void
dataReceived(Data data) {
 String senderName = data.getSenderName();
 String theData = data.getDataAsString();
 String message = senderName + “: “ + theData;

 System.out.println(message);
}

There is no reason why a Channel Consumer cannot consume Data on more

than one Channel at a time. In some situations this may be easier. Here’s a

code snippet for a Channel Consumer, that is handling Data received from two

Channels. Here’s the setup:

Client client;
Channel channel1, channel2;
Getting Started—April 15, 1998 28

2

ChannelConsumer consumer;

try {
 consumer = new ExampleConsumer();
 channel1.addConsumer(client, consumer);
 channel2.addConsumer(client, consumer);
} catch (JSDTException e) {
 System.out.println(“Couldn’t add Channel Consumers.”);
}

Here’s the dataReceived method for this Channel Consumer:

public synchronized void
dataReceived(Data data) {
 Channel channel = data.getChannel();
 byte[] theData = data.getDataAsBytes();

 if (channel.equals(channel1) {
 ... handle data for channel 1 ...
 } else if (channel.equals(channel2) {
 ... handle data for channel 2 ...
 }
}

If you wish to receive Data synchronously, use the Channel.receive method.

There are two variations:

public Data
receive(Client client)
 throws ConnectionException, InvalidClientException,
 NoSuchClientException, PermissionDeniedException,
 TimedOutException;

public Data
receive(Client client, long timeout)
 throws ConnectionException, InvalidClientException,
 NoSuchClientException, PermissionDeniedException,
 TimedOutException;

If a timeout value is not given, this method blocks until there is Data available

to receive. You can test if this is the case with the Channel.dataAvailable

method.

If a timeout period is specified then if Data is immediately available it will

return with it, else it will wait until the timeout period, has expired. If no Data

is available at this time, it will return null. Note that if Data becomes available
29 Java Shared Data Toolkit User Guide —April 15, 1999

2

during the timeout period, this method will be woken up and that Data is

immediately returned.

Here’s one way of doing the synchronous equivalent of the above example:

Client client;

try {
 if (channel.dataAvailable(client) == true) {

 Data data = channel.receive(client);
 String senderName = data.getSenderName();
 String theData = data.getDataAsString();
 String message = senderName + “: “ + theData;

 System.out.println(message);
 } else {
 ... do something else ...
 }
} catch (JSDTException e) {
 System.out.println(“Couldn’t receive Data over Channel.”);
}

2.9.3 Sending a Java Object

You can send any Java object over a Channel as long as that object is

completely Serializable. Here’s some code showing you how to do this.

Here’s the sending side:

Client client;
Channel channel;

public void
sendData(Object object) {

 // Turn the Java object into a Data object.
 Data data = new Data(object);

 try {
 // Send serialized object to all Channel Consumers.

 channel.sendToAll(client, data);
 } catch (JSDTException e3) {
 System.out.println(“Couldn’t send object over Channel.”);
 }
}

Getting Started—April 15, 1998 30

2

Here’s the receiving side, using the dataReceived method of a Channel

Consumer:

Object newObject = null;

public synchronized void
dataReceived(Data data) {

 try {
 // Extract Java object contained within the Data object.
 newObject = data.getDataAsObject();
 } catch (ClassNotFoundException e) {

System.out.println(“Couldn’t find class for new object.”);
 return;
 }

 ... work with new object ...

}

2.10 ByteArray
A ByteArray is an object containing data (an array of bytes) that is

permanently available to Clients within a Session. This global data can be

written to by a Client at anytime during the life of the Session, and that new

value is available to be read by other Clients.

A ByteArray can be used to:

• add or remove a ByteArray Listener (see Section 4.4, “ByteArray Listener”).

• get or set the ByteArray value.

A Client can also be notified when the value of a ByteArray has changed (see

Section 4.4, “ByteArray Listener”).

Note that using the serialization capabilities of Java, the value of a ByteArray

object can be easily set to any other kind of Java object.

The ByteArray class provides convenience methods for getting or setting the

value as:

• an array of bytes.

• a String object

• a Java object. This Java object must be serializable.
31 Java Shared Data Toolkit User Guide —April 15, 1999

2

Clients get a reference to a ByteArray and can automatically join it with the

Session.createByteArray method. This is used to provide a means of

returning a reference to the ByteArray without having to worry about

whether it already exists. The first call to createByteArray for a particular

ByteArray name will create a session-wide reference to it in the server. Future

calls will return that reference. You can use the Session.byteArrayExists

method to check to see if a ByteArray with a given name already exists.

Here’s some example code to create and automatically join a ByteArray, and

get it’s current value. If this ByteArray did not already exist, then it’s initially

set to a single byte array of zero value.

Session session;
Client client;
ByteArray byteArray;

try {
 byteArray = session.createByteArray(client, “StockValue”,
 true);

 value = byteArray.getValue();
} catch (JSDTException e) {
 System.out.print(“Couldn’t create and join the ByteArray.”);
}

The three parameters to the createByteArray call are:

• client - the Client that will be creating and potentially joining the

ByteArray.

• name - the name of the ByteArray to create.

• autoJoin - indicates if the Client is automatically joined to the

ByteArray when it’s created.

An important point to note here is that if the ByteArray you are getting a

reference to with the createByteArray method already exists, and has a

different byte array value, then the ByteArray you will be returned will have

that previous value. You should use the ByteArray.getValue method to retrieve

the current value of the ByteArray.

There is no reason why, a Client couldn’t create a ByteArray at one point,

then join it at a later date. Here’s some sample code that takes this approach:

Session session;
Client client;
ByteArray byteArray;
Getting Started—April 15, 1998 32

2

try {
 byteArray = session.createByteArray(client, “StockValue”,
 false);
 ...
 byteArray.join(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t create and join the ByteArray.”);
}

Before a Client can set a ByteArray value, it must join the ByteArray. It must

also join the Session that the ByteArray was created in before it can join the

ByteArray.

You can use the ByteArray.setValue method to set the ByteArray to a new

byte array value. This byte array can contain any kind of value. It can even

contain more than one value. As long as the marshalling and unmarshalling of

this data is consistent, anything can be stored in the byte array. The following

sample code packs various information related to a stock value into the byte

array before setting it in the ByteArray.

Client client;
ByteArray byteArray;
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream dos = DataOutputStream(baos);

try {
 dos.writeUTF(symbol);
 dos.writeBoolean(isValid);
 if (isValid) {
 dos.writeUTF(time);
 dos.writeUTF(stockValue);
 dos.writeUTF(change);
 dos.writeUTF(quotes);
 }
 dos.flush();
} catch (IOException e) {
 System.out.println(“Couldn’t write stock information.”);
}

try {
 byteArray.setValue(client, baos.toByteArray());
} catch (JSDTException je) {
 System.out.println(“Couldn’t set the ByteArray value.”);
}

33 Java Shared Data Toolkit User Guide —April 15, 1999

2

Unpacking this stock information which has been stored in the ByteArray is

just the reverse of the way it was written:

ByteArray byteArray;
byte[] value;
ByteArrayInputStream bais;
DataInputStream dis;

try {
 value = byteArray.getValue();
} catch (JSDTException je) {
 System.out.println(“Couldn’t get the ByteArray value.”);
}
bais = new ByteArrayInputStream(value, 0, value.length);
dis = new DataInputStream(bais);

try {
 String symbol = dis.readUTF();
 boolean isValid = dis.readBoolean();

 if (isValid) {
 String time = dis.readUTF();
 String stockValue = dis.readUTF();
 String change = dis.readUTF();
 String quotes = dis.readUTF();
 }
} catch (IOException e) {
 System.out.println(“Couldn’t read stock information.”);
}

2.11 Token
A Token is a synchronization object which provides a unique distributed

atomic operation. Tokens can be used to implement a variety of different

application-level synchronization mechanisms.

Tokens provide a means to implement exclusive access. For example, to ensure

in a multipoint application using various resources, that one and only one

site holds a given resource at a given time, a Token can be associated with

every resource. When a site wishes to use a specific resource, it must ask for its

corresponding Token, which will be granted only if no one else is holding it.

A Token can be used to:

• add or remove a Token Listener (see Section 4.5, “Token Listener”).
Getting Started—April 15, 1998 34

2

• grab a Token (exclusively or non-exclusively).

• list all the Clients that are holding (grabbing or inhibiting) this Token.

• release a Token.

• test a Token’s current status.

• give a Token to another Client.

• request a Token from another Client.

The Token.grab method allows one client to exclusively hold a given token.

The Client defines the significance of this token in the application. Other

Clients may use the Token.test method to determine the status at any time

and may request the token from the holder with the Token.request method.

The Token holder may transfer control of a token to another specified Client

with the Token.give method or return a Token to a generally available status

with the Token.release method.

Doing a Token.test on a Token will show it to be in one of four states:

• Token.NOT_IN_USE - a freely available Token

• Token.GRABBED - a Token exclusively grabbed by a Client.

• Token.INHIBITED - a Token non-exclusively grabbed by one or more

Clients.

• Token.GIVING - a Token in the process of being given to a Client by

another Client.

Most Token operations return a status value indicating whether the operation

was a success. There are two more status values that can be return apart from

the four state values listed above:

• Token.ALREADY_GRABBED - an attempt was made to grab a Token that

was already being grabbed by a Client.

• Token.ALREADY_INHIBITED - anattemptwasmadetoexclusivelygraba

Token that was already being grabbed by one or more Clients in a non-

exclusive mode.

Tokens are created in a similar way to ByteArrays or Channels.

Clients get a reference to a Token and can automatically join it with the

Session.createToken method. This is used to provide a means of returning a

reference to the Token without having to worry about whether it already exists.

The first call to createToken for a particular Token name will create a session-

wide reference to it in the server. Future calls will return that reference.

You can use the Session.tokenExists method to check to see if a Token with a

given name already exists.
35 Java Shared Data Toolkit User Guide —April 15, 1999

2

Here’s some example code to create and automatically join a Token, and get it’s

current status.

Session session;
Client client;
Token token;
int status;
try {
 token = session.createToken(client, “FileToken”, true);
 status = token.test();

 System.out.print(“Token status is: “);
 switch (status) {
 case Token.NOT_IN_USE: System.out.println(“ not in use.”);
 break;

 case Token.GRABBED: System.out.println(“ grabbed.”);
 break;
 case Token.INHIBITED: System.out.println(“ inhibited.”);

 break;
 case Token.GIVING: System.out.println(“ giving.”);
 break;
 }
} catch (JSDTException e) {
 System.out.print(“Couldn’t create, join or test the Token.”);
}

The three parameters to the createToken call are:

• client - the Client that will be creating and potentially joining the

Token.

• name - the name of the Token to create.

• autoJoin - indicates if the Client is automatically joined to the Token when

it’s created.

There is no reason why, a Client couldn’t create a Token at one point, then join

it at a later date. Here’s some sample code that takes this approach:

Session session;
Client client;
Token token;

try {
 token = session.createToken(client, “FileToken”, false);
 ...
 token.join(client);
} catch (JSDTException e) {
Getting Started—April 15, 1998 36

2

 System.out.print(“Couldn’t create and join the Token.”);
}

Before a Client can grab a Token, it must join the Token. It must also join the

Session that the Token was created in before it can join the Token.

A single Token may be used to coordinate a multiple Client event by using

the Token.grab method in a non-exclusive mode. Clients can independently

inhibit and release the same Token. For example, if it was desired to know

when all Clients have completed reception and processing of a bulk file

transfer, all receiving Clients would non-exclusively grab (inhibit) the same

Token and each individual Client would release the Token when it had

completed the proscribed process. Any Client could test the Token at will to

determine if the Token is free which means all the Clients have completed

processing.

Here’s a code snippet that shows this:

Client client;
Token token;

try {
 token.grab(client, false); // Grab token non-exclusively.
 ... download large file ...
 token.release(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t download file.”);
}

Testing to see if all Clients had completed this download operation would be

something like:

Token token;

try {
 while (token.test() != Token.NOT_IN_USE) {
 ... sleep or do something else ...
 }
 System.out.println(“Download completed for each Client.”);
} catch (JSDTException e) {
 System.out.print(“Couldn’t download file.”);
}

37 Java Shared Data Toolkit User Guide —April 15, 1999

2

2.12 Manageable Objects
Sessions, Channels, ByteArrays and Tokens are all Manageable objects, and

are subclassed from the Manageable class. They can all optionally have a

Manager associated with them that authenticates each Client to see if they

are allowed to do the requested operation (see Chapter 3, “Managers”).

A Manageable object can be used to:

• get the name of this Manageable object.

• list the names of the Clients who are joined to this Manageable object.

• determine if the Manageable object has a manager associated with it.

• join this Manageable object.

• leave this Manageable object.

• enable or disable listener events (see Chapter 4, “Listeners”).

• enable or disable manager events (see Chapter 3, “Managers”).

• destroy the Manageable object.

• invite a list of Clients to join this Manageable object.

• expel a list of Clients from this Manageable object.

2.12.1 Getting a Manageable Objects Name

Use the getName method to get a Manageable objects name. For example:

ByteArray byteArray;

System.out.println(“ByteArray name is: “ + byteArray.getName());

2.12.2 Who’s Joined a Manageable Object

Use the listClientNames method to list the names of all the Clients that are

currently joined to this Manageable object. For example:

Session session;

try {
 String clientNames[] = session.listClientNames();
 if (clientNames == null) {

 System.out.println(“No Clients joined to Session.”);
 } else {

System.out.println(clientNames.length + “ Clients joined.”);
 for (int i = 0; i < clientNames.length; i++) {

 System.out.println(clientNames[i]);
Getting Started—April 15, 1998 38

2

 }
 }
} catch (JSDTException e) {
 System.out.print(“Couldn’t list Client names.”);
}

2.12.3 Joining a Manageable Object

Use the join method to join a Manageable object. A Client needs to join that

object before it can do most operations. A Client can also automatically join a

Managable ByteArray, Channel or Token at the time of it’s creation.

If it is a managed object, then the Client is authenticated to determine if it is

permitted to join

For example, here’s some sample code for joining an unmanaged Token you

already have a reference to:

Client client;
Token token;

try {
 token.join(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t join Token.”);
}

2.12.4 Leaving a Manageable Object

Use the leave method on a Manageable object when you are no longer

interested in it. Doing this will mean that that Client is no longer known to that

Manageable object. JSDT applications should tidy themselves up before

terminating, by leaving all objects they had previously joined.

For a Client that had previously joined a ByteArray and a Channel and the

Session which contained them, this could look like:

Client client;
Session session;
ByteArray byteArray;
Channel channel;

try {
 byteArray.leave(client);
39 Java Shared Data Toolkit User Guide —April 15, 1999

2

 channel.leave(client);
 session.leave(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t leave successfully.”);
}

Leaving a Session will automatically cause the leave method to be called for

that Client, for any Manageable object (ByteArray, Channel, Token) that that

Client had joined within that Session.

2.12.5 Customizing a Listeners Events.

Use the enableListenerEvents and disableListenerEvents methods, to

customize which events you’d like a Listener to receive. This will reduce

network traffic. Here’s some code that will setup a Session Listener to just

receive join and leave events for that Session.

Session session;
SessionListener listener;
try {
 session.addSessionListener(listener);
 session.enableListenerEvents(listener,

SessionEvent.JOIN | Session.LEFT);
} catch (JSDTException e) {
 System.out.print(“Couldn’t setup Session Listener.”);
}

Note that the second parameter is a mask of the events you wish to enable.

2.12.6 Customizing a Managers Events.

Use the enableManagerEvents and disableManagerEvents methods, to

customize which events you’d like a Manager to do authentication on. Actions

associated with events that are not in the Managers mask will occur without

authentication. By default, a Manager will provide authentication for all

actions associated with that Manageable object that need authenticating (see

Chapter 3, “Managers”).

Only the creator of the managed object can call these two methods. Here’s

some code that will setup a Session Manager to disable authentication for any

ByteArrays and Channels that are created within this Session.

Session session;
Getting Started—April 15, 1998 40

2

SessionManager manager;
try {
 session.disableManagerEvents(manager,
 SessionEvent.BYTEARRAY_CREATED |
 SessionEvent.CHANNEL_CREATED);
} catch (JSDTException e) {
 System.out.print(“Couldn’t setup Session Manager mask.”);
}

Note that the second parameter is a mask of the events you wish to disable

authentication on.

2.12.7 Destroying a Manageable Object

Use the destroy method to completely destroy any reference to a Manageable

object. The server for that object will force all Clients to be expelled from it,

before destroying all reference to it. When destroying a Session, the reference

to that Session in the Registry is also removed.

Here’s a code snippet for destroying a Channel:

Channel channel;
Client client;

try {
 channel.destroy(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t destroy Channel.”);
}

2.12.8 Inviting and Expelling Clients

Use the invite method to invite a list of Clients to join a Manageable object.

Note that you need to have an array of Client objects in order to perform this

task. Typically the only Client handles you have, are the ones you created

yourself, so how do you do this?

It’s very simple. Use the special Clients that can be created by the

ClientFactory.createClient method (see Section 2.5, “ClientFactory).

You will need to supply an object that has implemented the Client interface

and an object that has implemented the ClientListener interface. The Client

object will be used for authentication purposes and the ClientListener object
41 Java Shared Data Toolkit User Guide —April 15, 1999

2

will be notified when this special Client receives invitations to join a Session,

ByteArray, Channel or Token, or when it has been expelled from a Session,

ByteArray, Channel or Token. The same object could implement both the Client

and the ClientListener interfaces.

Here’s some sample code that does exactly this for the socket implementation:

Client client;
URLString url = URLString.createClientURL(“myHost.Com”, 6677,
 “socket”, “FrankClient”);

try {
 client = new InviteClient(“Frank”);
 ClientFactory.createClient(url, client, client);
} catch (JSDTException e) {
 System.out.println(“Couldn’t create Client.”);
}

InviteClient looks like:

public class
InviteClient extends ClientAdaptor implements Client {

 private String name;

 public
 InviteClient(String name) {
 this.name = name;
 }

 public String
 getName() {
 return(name);
 }

 public Object
 authenticate(AuthenticationInfo info) {
 return(null);
 }

 public void
 sessionInvited(ClientEvent event) {
 String resourceName = event.getResourceName();
 Session session;

 try {
Getting Started—April 15, 1998 42

2

 session = event.getSession();
 session.join(this);
 } catch (Exception e) {
 System.out.println(“Couldn’t join Session.”);
 }
 }
}

As InviteClient extends ClientAdaptor, you just need to include in the methods

for any Client events you are interested in. In this case, we are interested in the

Session invite, so we have a sessionInvited method. When this is called, we get

a handle to that Session, and then join it.

Here’s some code that will get a handle to this special Client from the

Registry, and invite it to join a Session:

Client inviteClient;
Session session;
URLString url = URLString.createClientURL(“myHost.Com”, 6677,
 “socket”, FrankClient”);

try {
 Client[] clients = new Client[1];
 inviteClient = (Client) Naming.lookup(url);
 clients[0] = inviteClient;
 session.invite(clients);
} catch (JSDTException e) {
 System.out.println(“Couldn’t invite Client to join Session.”);
}

You can use the expel method to expel a list of Clients from a Manageable

object in a similar way. Client expulsion can only be done if the Manageable

object has a manager associated with it, and can only be done by the creator of

that managed object.

When a Client is expelled from a Manageable object, it is a forced expulsion ,

and there is nothing that that Clients application can do to stop it. Typical

usage would be:

– if an application is running too slowly or not responding.

– if an application is doing something inappropriate.
43 Java Shared Data Toolkit User Guide —April 15, 1999

Managers 3
3.1 Overview
A JSDT Manager is an object which encapsulates some management policy for

a Manageable object. There can only be one manager associated with a

managed object. The manager must be assigned the very first time the

Manageable object is created.

Access to a Session, ByteArray, Channel or Token can be controlled by

assigning a Manager to it at creation time. The Manager will authenticate

Clients wishing to join this resource, and based upon their response will accept

or reject them. The creation or destruction of ByteArrays, Channel and Tokens

within a managed Session are processes which also require authentication.

The Manager of a ByteArray, Channel, Session or Token can invite a Client to

join that resource using the Manageable.invite method. Clients then join that

resource using the regular join method. In a similar way, a Manager can force a

Client to leave a resource with the Manageable.expel method.

3.2 Authentication
A special AuthenticationInfo class is used to encapsulate all the information

needed by a Client to determine what they are being asked to authenticate.

JSDT applications implement the Client interface in order to join the various

JSDT objects, and send and receive data. One of the two methods that the

Client interface declares is:

public Object authenticate(AuthenticationInfo info);
44

3

Authentication takes place in the following situations:

• when a Client tries to create or destroy a ByteArray in a managed Session.

• when a Client tries to create or destroy a Channel in a managed Session.

• when a Client tries to create or destroy a Token in a managed Session.

• when a Client tries to join a managed Session

• when a Client tries to join a managed ByteArray.

• when a Client tries to join a managed Channel.

• when a Client tries to join a managed Token.

The manager sends the Client an authentication request. Within this request is

a challenge. The Client replies with a response. This response is validated by

the manager and determines if the Client will be allowed to do the requested

operation.

The challenge given by the manager and the response provided by the Client

are both Java objects. There must be some agreed policy between the manager

and the Client with regards to these objects. In other words the Client needs to

know what to do with the challenge and how to respond to it, and the manager

needs to know how to handle that response.

The AuthentificationInfo object contains the following information:

• the Session associated with this authentication operation.

• the type of managed object. This will be one of:

– AuthentificationInfo.BYTEARRAY

– AuthentificationInfo.CHANNEL

– AuthentificationInfo.SESSION

– AuthentificationInfo.TOKEN

• the name of the object associated with this authentication operation. This

will be the name of the ByteArray, Channel or Token being created, or the

name of the ByteArray, Channel, Session or Token being destroyed, or the

name of the manageable object the Client is trying to join.

• the authentication action, This will be one of:

– AuthentificationInfo.JOIN

– AuthentificationInfo.CREATE_BYTEARRAY

– AuthentificationInfo.DESTROY_BYTEARRAY

– AuthentificationInfo.CREATE_CHANNEL

– AuthentificationInfo.DESTROY_CHANNEL

– AuthentificationInfo.CREATE_TOKEN

– AuthentificationInfo.DESTROY_TOKEN

– AuthentificationInfo.DESTROY_SESSION

• the challenge given by the manager.
45 Java Shared Data Toolkit User Guide —April 15, 1999

3

3.3 Session Manager
A Session Manager is associated with a Session at Session create time. There is

a variant of the SessionFactory.createSession method to do this:

public static Session
createSession(String url, SessionManager sessionManager)
throws NoRegistryException, NoSuchHostException,
 InvalidURLException, NoSuchSessionException,

 ManagerExistsException, TimedOutException;

A Session Manager needs to implement the SessionManager interface which

declares one method:

public boolean
sessionRequest(Session session,
 AuthenticationInfo info, Client client);

Here is the simplest form of a class which implements SessionManager:

public class
ExampleSessionManager implements SessionManager {

 public boolean
 sessionRequest(Session session,

 AuthenticationInfo info, Client client) {
 String challenge = “<challenge>”;

 String expectedResponse = “<response>”;
 String reply = null;

 info.setChallenge(challenge);
 reply = (String) client.authenticate(info);
 return(reply.equals(expectedResponse));
 }
}

What you would put in the Session Manager’s sessionRequest method is given

in the example code below.

Here’s a snippet of code showing the creation of a Session Manager and it’s

association to a Session at Session creation time:

SessionManager sessionManager;
Session session;
String url =
 “jsdt://stard:4461/socket/Session/managedSession”;
Managers—April 15, 1999 46

3

try {
 sessionManager = new ExampleSessionManager();
 session = SessionFactory.createSession(url,
 sessionManager);
} catch (JSDTException e) {
 System.out.print(“Couldn’t create Session with manager.”);
}

A Client could now attempt to join this managed Session:

Session session;
Client client;

try {
 session.join(client);
} catch (JSDTException e) {
 System.out.print(“Couldn’t join the managed Session.”);
}

This attempt would cause the Session Managers sessionRequest method to be

called. This could look something like:

public boolean
sessionRequest(Session session,
 AuthenticationInfo info, Client client) {
 String reply = null;
 info.setChallenge(“ABCDEF”);
 reply = (String) client.authenticate(info);
 return(reply.equals(“abcdef”));
}

Note that this manager is sending the Client a challenge of “ABCDEF”. The

Client needs to reply with “abcdef” to be successfully authenticated, and

allowed to join the Session. It’s authenticate method could look something

like this:

public Object
authenticate(AuthenticationInfo info) {
 int action = info.getAction();

 String type = info.getType();
 String name = info.getName();
 String challenge = (String) info.getChallenge();

 String response = null;

 if (action == AuthenticationInfo.JOIN &&
47 Java Shared Data Toolkit User Guide —April 15, 1999

3

 type == AuthentificationInfo.SESSION &&
 name.equals(“managedSession”) &&
 challenge.equals(“ABCDEF”)) {
 response = “abcdef”;
 } else {
 ... process other authentication requests ...
 }
 return(response);
}

3.4 Channel Manager
A Channel Manager is associated with a Channel at Channel create time.

There is a variant of the Session.createChannel method to do this:

public Channel
createChannel(Client client, String channelName,
 boolean reliable, boolean ordered,
 ChannelManager channelManager)
throws NoSuchSessionException, NoSuchClientException,
 NoSuchHostException, PermissionDeniedException,
 ManagerExistsException, TimedOutException;

A Channel Manager needs to implement the ChannelManager interface which

declares one method:

public boolean
channelRequest(Channel channel,
 AuthenticationInfo info, Client client);

Here is the simplest form of a class which implements ChannelManager:

public class
ExampleChannelManager implements ChannelManager {

 public boolean
 channelRequest(Channel channel,
 AuthenticationInfo info, Client client) {
 boolean validation;

 ... handle channel authentication request ...
 return(validation);
 }
}

Managers—April 15, 1999 48

3

See Section 3.3, ”Session Manager” for an example of authentication between a

Client and the Manager of a managed object.

3.5 ByteArray Manager
A ByteArray Manager is associated with a ByteArray at ByteArray create time.

There are two variants of the Session.createByteArray method to do this:

public ByteArray
createByteArray(Client client, String byteArrayName,
 byte[] value,
 ByteArrayManager byteArrayManager)
throws NoSuchSessionException, NoSuchClientException,
 NoSuchHostException, PermissionDeniedException,
 ManagerExistsException, TimedOutException;

public ByteArray
createByteArray(Client client, String byteArrayName,
 byte[] value, int offset, int length,
 ByteArrayManager byteArrayManager)
throws NoSuchSessionException, NoSuchClientException,
 NoSuchHostException, PermissionDeniedException,
 ManagerExistsException, TimedOutException;

A ByteArray Manager needs to implement the ByteArrayManager interface

which declares one method:

public boolean
byteArrayRequest(ByteArray byteArray,
 AuthenticationInfo info, Client client);

Here is the simplest form of a class which implements ByteArrayManager:

public class
ExampleByteArrayManager implements ByteArrayManager {

 public boolean
 byteArrayRequest(ByteArray byteArray,
 AuthenticationInfo info, Client client) {
 boolean validation;

 ... handle bytearray authentication request ...
 return(validation);
 }
49 Java Shared Data Toolkit User Guide —April 15, 1999

3

}

See Section 3.3, ”Session Manager” for an example of authentication between a

Client and the Manager of a managed object.

3.6 Token Manager
A Token Manager is associated with a Token at Token create time. There is a

variant of the Session.createToken method to do this:

public Token
createToken(Client client, String tokenName,
 TokenManager tokenManager)
throws NoSuchSessionException, NoSuchClientException,
 NoSuchHostException, PermissionDeniedException,
 ManagerExistsException, TimedOutException;

A Token Manager needs to implement the TokenManager interface which

declares one method:

public boolean
tokenRequest(Token token,
 AuthenticationInfo info, Client client);

Here is the simplest form of a class which implements TokenManager:

public class

ExampleTokenManager implements TokenManager {

 public boolean
 tokenRequest(Token token,
 AuthenticationInfo info, Client client) {
 boolean validation;

 ... handle token authentication request ...
 return(validation);
 }
}

See Section 3.3, ”Session Manager” for an example of authentication between a

Client and the Manager of a managed object.
Managers—April 15, 1999 50

3

51 Java Shared Data Toolkit User Guide —April 15, 1999

Listeners 4
4.1 Overview
A Listener is an object that has registered its interest in being notified about

changes in state of some other given JSDT object. It can listen for changes in

the state of a Session, Channel, ByteArray, Token or Client.

A Session Listener will be notified about Clients joining, leaving, being invited

to join, or being expelled from a Session. It will also be notified when a

ByteArray, Channel or Token is created or destroyed within that Session, and

when a Session is destroyed.

A Channel Listener will be notified about Clients joining, leaving, being

invited to join or being expelled from a Channel. It will also be notified when

a ChannelConsumer has been added or removed from a Channel.

A ByteArray Listener will be notified about Clients joining, leaving, being

invited to join or being expelled from a ByteArray.

A Token Listener will be notified about Clients joining and leaving a Token,

plus a Client being invited to join a Token or expelled from a Token. It will also

be notified when a Client has given or requested or grabbed or released a

Token.

A Client Listener will be notified when it has been invited to join or been

expelled from a ByteArray, Channel, Session or Token. It will also be notified

when a Client is given a Token.

Listeners, Events and Adaptors use another JSDT package:
52

4

com.sun.media.jsdt.event.*;

When writing any code that makes use of these three kinds of objects, make

sure you include an import line for this package.

4.2 Session Listener
A Session Listener can be associated with a Session after the Session has been

created. The Session.addSessionListener method is used to achieve this.

A Session Listener needs to implement the SessionListener interface which

declares ten methods:

public void byteArrayCreated(SessionEvent event);
public void byteArrayDestroyed(SessionEvent event);
public void channelCreated(SessionEvent event);
public void channelDestroyed(SessionEvent event);
public void sessionDestroyed(SessionEvent event);
public void sessionJoined(SessionEvent event);
public void sessionLeft(SessionEvent event);
public void sessionInvited(SessionEvent event);
public void sessionExpelled(SessionEvent event);
public void tokenCreated(SessionEvent event);
public void tokenDestroyed(SessionEvent event);

These are a lot of methods to implement if you are only interested in certain

event types (joining and leaving the Session for example). For an alternate

approach to Session event notification, See Chapter 6, “Adaptors”.

4.3 Channel Listener
A Channel Listener can be associated with a Channel after the Channel has

been created. The Channel.addChannelListener method is used to achieve this.

A Channel Listener needs to implement the ChannelListener interface which

declares four methods:

public void channelJoined(ChannelEvent event);
public void channelLeft(ChannelEvent event);
public void channelInvited(ChannelEvent event);
public void channelExpelled(ChannelEvent event);
public void channelConsumerAdded(ChannelEvent event);
public void channelConsumerRemoved(ChannelEvent event);
53 Java Shared Data Toolkit User Guide —April 15, 1999

4

These are a lot of methods to implement if you are only interested in certain

event types (joining and leaving the Channel for example). For an alternate

approach to Channel event notification, see Chapter 6, “Adaptors”.

4.4 ByteArray Listener
A ByteArray Listener can be associated with a ByteArray after the ByteArray

has been created. The ByteArray.addByteArrayListener method is used to

achieve this.

A ByteArray Listener needs to implement the ByteArrayListener interface

which declares five methods:

public void byteArrayJoined(ByteArrayEvent event);
public void byteArrayLeft(ByteArrayEvent event);
public void byteArrayValueChanged(ByteArrayEvent event);
public void byteArrayInvited(ByteArrayEvent event);
public void byteArrayExpelled(ByteArrayEvent event);

These are a lot of methods to implement if you are only interested in certain

event types (when the byte array value changes for example). For an alternate

approach to ByteArray event notification, see Chapter 6, “Adaptors”.

4.5 Token Listener
A Token Listener can be associated with a Token after the Token has been

created. The Token.addTokenListener method is used to achieve this. A Token

Listener needs to implement the TokenListener interface which declares eight

methods:

public void tokenJoined(TokenEvent event);
public void tokenLeft(TokenEvent event);
public void tokenGiven(TokenEvent event);
public void tokenRequested(TokenEvent event);
public void tokenGrabbed(TokenEvent event);
public void tokenReleased(TokenEvent event);
public void tokenInvited(TokenEvent event);
public void tokenExpelled(TokenEvent event);

These are a lot of methods to implement if you are only interested in certain

event types (joining and leaving for example). For an alternate approach to

Token event notification, see Chapter 6, “Adaptors”.
Listeners—April 15, 1999 54

4

4.6 Client Listener
A Client Listener can be associated with a Client after the Client has been

created. The Client needs to implement the ClientListener interface which

declares eight methods:

public void byteArrayInvited(ClientEvent event);
public void byteArrayExpelled(ClientEvent event);
public void channelInvited(ClientEvent event);
public void channelExpelled(ClientEvent event);
public void sessionInvited(ClientEvent event);
public void sessionExpelled(ClientEvent event);
public void tokenInvited(ClientEvent event);
public void tokenExpelled(ClientEvent event);
public void tokenGiven(ClientEvent event);

These are a lot of methods to implement if you are only interested in certain

event types (session invites for example). For an alternate approach to Client

event notification, see Chapter 6, “Adaptors”.
55 Java Shared Data Toolkit User Guide —April 15, 1999

Events 5
5.1 Overview
Events encapsulate a change of state in a JSDT object. They are sent to

Listeners who have registered interest in such state changes. Convenience

methods are available to extract that information and handle it appropriately.

5.1 Session Event
Session events are created for the following actions:

• when a ByteArray has been created.

• when a ByteArray has been destroyed.

• when a Channel has been created.

• when a Channel has been destroyed.

• when a Token has been created.

• when a Token has been destroyed.

• when a Client has joined a Session.

• when a Client has left a Session.

• when a Client has been invited to join a Session.

• when a Client has been expelled from a Session.

• when a Session has been destroyed.

A Session Event contains the following information:

• the type of this Session event. Valid types are:

– SessionEvent.BYTEARRAY_CREATED

– SessionEvent.BYTEARRAY_DESTROYED
56

5

– SessionEvent.CHANNEL_CREATED

– SessionEvent.CHANNEL_DESTROYED

– SessionEvent.TOKEN_CREATED

– SessionEvent.TOKEN_DESTROYED

– SessionEvent.JOINED

– SessionEvent.LEFT

– SessionEvent.INVITED

– SessionEvent.EXPELLED

– SessionEvent.DESTROYED

• the session associated with this Session event.

• the name of the Client causing this event.

• the name of the resource within the Session that the event affects.

5.1 Channel Event
Channel events are created for the following actions:

• when a Client has joined a Channel.

• when a Client has left a Channel.

• when a Client has been invited to join a Channel.

• when a Client has been expelled from a Channel.

• when a Client has added a Consumer to the Channel.

• when a Client has removed a Consumer from the Channel.

A Channel Event contains the following information:

• the type of this Channel event. Valid types are:

– ChannelEvent.JOINED

– ChannelEvent.LEFT

– ChannelEvent.INVITED

– ChannelEvent.EXPELLED

– ChannelEvent.CONSUMER_ADDED

– ChannelEvent.CONSUMER_REMOVED

• the session associated with this Channel event.

• the Channel associated with this Channel event.

• the name of the Client causing this event.
57 Java Shared Data Toolkit User Guide—April 15, 1999

5

5.1 ByteArray Event
ByteArray events are created for the following actions:

• when a Client has joined a ByteArray.

• when a Client has left a ByteArray.

• when the value of a ByteArray changes.

• when a Client has been invited to join a ByteArray.

• when a Client has been expelled from a ByteArray.

A ByteArray Event contains the following information:

• the type of this ByteArray event. Valid types are:

– ByteArrayEvent.JOINED

– ByteArrayEvent.LEFT

– ByteArrayEvent.VALUE_CHANGED

– ByteArrayEvent.INVITED

– ByteArrayEvent.EXPELLED

• the session associated with this ByteArray event.

• the ByteArray associated with this ByteArray event.

• the name of the Client causing this event.

5.1 Token Event
Token events are created for the following actions:

• when a Token has been given from one Client to another.

• when a Client has grabbed a Token.

• when a Client has inhibited a Token.

• when a Client has joined a Token.

• when a Client has left a Token.

• when a Client has released itself from a Token.

• when a Client has requested a Token.

• when a Client has been invited to join a Token.

• when a Client has been expelled from a Token.

A Token Event contains the following information:

• the type of this Token event. Valid types are:

– TokenEvent.GIVEN

– TokenEvent.GRABBED

– TokenEvent.INHIBITED

– TokenEvent.JOINED

– TokenEvent.LEFT
Events—April 15, 1999 58

5

– TokenEvent.RELEASED

– TokenEvent.REQUESTED

– TokenEvent.INVITED

– TokenEvent.EXPELLED

• the session associated with this Token event.

• the Token associated with this Token event.

• the name of the Client causing this event.

5.1 Client Event
Client events are created for the following actions:

• when a Client has been invited to join a ByteArray.

• when a Client has been expelled from a ByteArray.

• when a Client has been invited to join a Channel.

• when a Client has been expelled from a Channel.

• when a Client has been invited to join a Session.

• when a Client has been expelled from a Session.

• when a Client has been invited to join a Token.

• when a Client has been expelled from a Token.

• when a Client has been given a Token.

A Client Event contains the following information:

• the type of this Client event. Valid types are:

– ClientEvent.BYTEARRAY_INVITED

– ClientEvent.BYTEARRAY_EXPELLED

– ClientEvent.CHANNEL_INVITED

– ClientEvent.CHANNEL_EXPELLED

– ClientEvent.SESSION_INVITED

– ClientEvent.SESSION_EXPELLED

– ClientEvent.TOKEN_INVITED

– ClientEvent.TOKEN_EXPELLED

– ClientEvent.TOKEN_GIVEN

• the session associated with this Client event.

• the Client associated with this Client event.

• the name of the resource that this event occured on.
59 Java Shared Data Toolkit User Guide—April 15, 1999

Adaptors 6
6.1 Overview
Adaptors are abstract classes that you can use to avoid having to provide

empty method implementations for all the Listener methods you are not

interested in. Instead of implementing the interface for the Listener you are

interested in, you extend its Adaptor instead, filling in only the methods for

the event types you want to handle. The Adaptor silently handles the

remainder.

A SessionAdaptor can be used to receive all Session Events.

A ChannelAdaptor can be used to receive all Channel Events.

A ByteArrayAdaptor can be used to receive all ByteArray Events.

A TokenAdaptor can be used to receive all Token Events.

A ClientAdaptor can be used to receive all Client Events.

A couple of examples should show how easy Adaptors are to use.

6.1 Handling ByteArray Value Changes
A ByteArray Listener needs to implement methods to handle when a Client

joins, leaves, is invited to join, or is expelled from a ByteArray, plus when the

value of a ByteArray changes. Five methods in all. Perhaps you only care when

the value of the ByteArray has changed, so you can do some local change (such

as redisplay the new stock information on the users screen).
60

6

Here’s how to use a ByteArrayAdaptor to achieve this in a simple manner.

All we need to do is create a class that extends ByteArrayAdaptor and

contains a byteArrayValueChanged method which we fill out to handle our

needs:

import com.sun.media.jsdt.*;
import com.sun.media.jsdt.event.*;

public class
ExampleByteArrayAdaptor extends ByteArrayAdaptor {

 public void
 byteArrayValueChanged(ByteArrayEvent event) {
 try {
 byte[] newValue = event.getByteArray().getValue();

 ... display new stock information ...
 } catch (NoSuchByteArrayException noe) {

System.out.println(“Couldn’t get stock info.”);
 }
 }
}

All the other ByteArray event types are handled silently by the empty methods

in the ByteArrayAdaptor class.

6.1 Giving a Token
Using a TokenAdaptor and a ClientAdaptor can simplify the code needed for

giving a Token from one Client to another. Lets assume the giver and the

receiver have already successfully created and joined the unmanaged Session

where the Token exchange is going to occur.

First the giver will create the Token and join it. It will add a Token Listener to

that Token, then grab the Token:

Client giverClient;
Session session;
Token token;

try {
 giverClient = new GiverClient(“Giver”);
 token = session.createToken(giverClient, “TheToken”, true);
 token.addTokenListener((TokenListener) giverClient);
61 Java Shared Data Toolkit User Guide—April 15, 1999

6

 token.grab(giverClient, true);
 } catch (JSDTException e) {
 System.out.println(“Giver: Couldn’t setup Token.”);
 }

We’ve used a class called GiverClient with these operations. GiverClient

implements Client and extends TokenAdaptor. In this class we are only

interested in when other Clients join the Token, so we only implement the

tokenJoined method. All other events are silently handled by the Token

Adaptor. When a Client named “Receiver” joins the Token we can then give

it to that Client. Here’s what GiverClient looks like:

public class
GiverClient extends TokenAdaptor implements Client {

 protected String name;

 public
 GiverClient(String name) {
 this.name = name;
 }

 public Object
 authenticate(AuthenticationInfo info) {
 return(null);
 }

 public String
 getName() {
 return(name);
 }

 public void
 tokenJoined(TokenEvent event) {
 String clientName = event.getClientName();
 Token token = event.getToken();

 if (clientName.equals(“Receiver”)) {
 try {
 token.give(this, clientName);
 } catch (JSDTException e) {
 System.out.println(“Couldn’t give Token.”);
 }
 }
 }
Adaptors—April 15, 1999 62

6

}

Now, on the receiving side we need to do something similar. The receiver

will create the Token and join it:

Client receiverClient;
Session session;
Token token;

try {
 receiverClient = new ReceiverClient(“Receiver”);

token = session.createToken(receiverClient, “TheToken”, true);
} catch (JSDTException e) {
 System.out.println(“Receiver: Couldn’t setup Token.”);
}

The receiver Client is slightly different to the giver Client. The ReceiverClient

class extends ClientAdaptor and implements Client. In this case we are only

interested in when another Client gives the Token specifically to us, so we only

implement the tokenGiven(ClientEvent event) method. All other Client events

are silently handled by the Client Adaptor.

Note that extending a TokenAdaptor adding ourselves as a Token listener and

implementing the tokenGiven(TokenEvent event) method would tell us when

Tokens were being given, but would not tell us that the Token was being given

to us specifically.

When we are given the Token we can then grab it. Here’s what ReceiverClient

looks like:

public class
ReceiverClient extends ClientAdaptor implements Client {

 private String name;

 public
 ReceiverClient(String name) {
 this.name = name;
 }

 public Object
 authenticate(AuthenticationInfo info) {
 return(null);
 }

 public String
63 Java Shared Data Toolkit User Guide—April 15, 1999

6

 getName() {
 return(name);
 }

 public void
 tokenGiven(ClientEvent event) {
 String tokenName = event.getResourceName();

 if (tokenName.equals(token.getName())) {
 try {
 token.grab(this, true);
 } catch (JSDTException e) {
 System.out.println(“Couldn’t grab Token.”);
 }
 }
 }
}

Adaptors—April 15, 1999 64

6

65 Java Shared Data Toolkit User Guide—April 15, 1999

Exceptions 7
7.1 Overview
JSDT throws various exceptions when an error has occured. It is up to the JSDT

application program to catch these and handle them appropriately.

All JSDT Exceptions are derived from the JSDTException class.

7.2 Exception Types
The following exception can be thrown:

• AlreadyBoundException - thrown when a Session or Client with this URL

is already bound in the Registry.

• ClientNotGrabbingException - thrown to indicate that an attempt has

been made to release a Token that had not been previously grabbed.

• ClientNotReleasedException - thrown when an attempt is made to

exclusively grab a Token that was still being grabbed by another Client.

• ConnectionException - thrown when some kind of network error has

occured when two components within a JSDT collaboration have failed to

communicate with each other.

• InvalidURLException - thrown when an attempt was made to use a URL

with the SessionFactory or Naming classes, which is not in the required

format.
66

7

• ManagerExistsException - thrown when an attempt is made to create a

managed ByteArray, Channel or Token which already exists, and which

already has a manager associated with it.

• NameInUseException - thrown when an attempt is made to use a JSDT

object which already has this name.

• NoRegistryException - thrown when an attempt is made to contact the

JSDT Registry, and it is not running. There should be a Registry running

on every machine that is serving up JSDT Sessions or Clients.

• NoSuchClientException - thrown if the Client is invalid is some way (i.e. its

getName() method returns null).

• NoSuchByteArrayException - thrown when an attempt is made to access a

ByteArray that doesn’t exist.

• NoSuchChannelException - thrown when an attempt is made to access a

Channel that doesn’t exist.

• NoSuchClientException - thrown when an attempt is made to access a

Client that doesn’t exist.

• NoSuchConsumerException - thrown when an attempt is made to access a

ChannelConsumer that doesn’t exist.

• NoSuchHostException - thrown when an attempt is made to access a remote

host that doesn’t exist.

• NoSuchListenerException - thrown when an attempt is made to access a

Listener that doesn’t exist.

• NoSuchManagerException - thrown when an attempt is made to access a

Manager that doesn’t exist.

• NoSuchSessionException - thrown when an attempt is made to access a

Session that doesn’t exist.

• NoSuchTokenException - thrown when an attempt is made to access a

Token that doesn’t exist.

• NotBoundException - thrown when an attempt is made to access a JSDT

Session or Client that is not bound with the Registry.

• PermissionDeniedException - thrown when an attempt is made to do an

operation on a JSDT object when it’s not permissible.

• PortInUseException - thrown when an attempt is made to use a port that is

already being used by another application.
67 Java Shared Data Toolkit User Guide —April 15, 1999

7

• RegistryExistsException - thrown when an attempt is made to start a

Registry when there is one already running.

• TimedOutException - thrown if no reply was received for this operation in

the given timeout period.
Exceptions—April 15, 1999 68

7

69 Java Shared Data Toolkit User Guide —April 15, 1999

Implementations 8
8.1 Overview
The design of JSDT is independent of the underlying implementation. Nothing

is specified on how the various components of JSDT applications communicate

with each other. This is left upto the individual implementations. The

com.sun.media.jsdt classes dynamically load the implementation the user

requires, based on the <impl> field of the JSDT Session URL Strings.

This release comes with four implementations. These are described in more

detail in this chapter, and include information that is specific to that

implementation.

8.2 Socket
The socket implementation uses TCP sockets to send messages to communicate

between the collaborating JSDT applications. It uses UDP sockets to provide

unreliable Channels. It will keep sockets open continually where possible.

You can also provide alternate sockets using this implementation (see

Section 8.6.11, “socketFactoryClass“).

8.2.1 Limitations
• The maximum size of the byte array, that can be sent in a Data object over

unreliable Channels is just less than 8 Kbytes, due to an underlying

limitation in the size of UDP packets.
70

8

• Data priorities are ignored.

8.2.2 SSL Support

Support has been added to this release for SSL sockets. To enable this support,

you will need to add two lines near the beginning of your JSDT applications:

com.sun.media.jsdt.impl.JSDTObject.socketFactoryClass =
 “com.sun.media.jsdt.socket.SSLSocketFactory”;

com.sun.media.jsdt.impl.JSDTObject.SSLCipher =
 "SSL_RSA_WITH_3DES_EDE_CBC_SHA”;

You will need to supply the SSL socket package separately (see Section 8.6.11,

“socketFactoryClass“ and Section 8.6.12, “SSLCipher“).

8.3 HTTP
The http implementation try to use a direct TCP socket connection wherever

possible. If this connection attempt fails, it will try to use HTTP POST

commands to send messages from the various JSDT proxy applications to the

JSDT server application, and the Registry. After sending each JSDT message,

and getting it’s reply the connection is closed. The various asynchronous

messages that JSDT can send are handled by storing them on the server for

each proxy, until that proxy pings the server, checking if there are any

messages for it.

Important Note.

When terminated, JSDT applications that use the HTTP implementation need

to properly cleanup their JSDT resources. As there is no permanent connection

between either the proxies and the server or the server and the Registry, this

doesn’t automatically happen.

8.3.1 Limitations
• No unreliable Channels.

• Data priorities are ignored.
71 Java Shared Data Toolkit User Guide—April 15, 1999

8

8.3.2 Working through firewalls

If the HTTP implementation of JSDT cannot get a direct TCP socket connection,

it uses HTTP-tunneling, in a similar manner to the way RMI does it. This

method is popular since it requires almost no setup, and works quite well in

firewalled environments which permit handle HTTP through a proxy, but

disallow regular outbound TCP connections.

An attempt will be made to tunnel JSDT requests through that proxy server,

one at a time.

There are two forms of HTTP-tunneling, tried in order. The first is http-to-port;

the second is http-to-cgi.

In http-to-port tunneling, JSDT attempts a HTTP POST request to a http: URL

directed at the exact hostname and port number of the target server. The HTTP

request contains a single JSDT request. If the HTTP proxy accepts this URL, it

will forward the POST request to the listening JSDT server, which will

recognise the request and unwrap it. The result of the call is wrapped in a

HTTP reply, which is returned through the same proxy.

Often, HTTP proxies will refuse to proxy requests to unusual port numbers. In

this case, JSDT will fall back to http-to-cgi tunneling. The JSDT request is

encapsulated in a HTTP POST request as before, but the request URL is of the

form http://hostname:80/cgi-bin/java-jsdt.cgi?port=n (where hostname and n

are the hostname and port number of the intended JSDT server). There must be

a HTTP server listening on port 80 on the server host, which will run the java-

jsdt.cgi script (supplied with the JSDT distribution), which will in turn forward

the request to a JSDT server listening on port n. JSDT can unwrap a HTTP-

tunneled request without help from a http server, CGI script, or any other

external entity. So, if the client’s HTTP proxy can connect directly to the

server’s port, then you don’t need a java-jsdt.cgi script at all.

Note that you can set an alternate HTTP proxy port using the httpTunnelPort

variable (see Section 8.6.2, “httpTunnelPort“).

If you are running a web server that is capable of running Java servlets, then

you can alias the “/cgi-bin/java-jsdt.cgi” script to a Java servlet class called

com.sun.media.jsdt.http.ServletHandler which is also included with the JSDT

distribution. This is much faster that a CGI script.

Note that the http-to-cgi method opens a dramatic security hole on the server

side, since without modification it will redirect any incoming request to any

port.
Implementations—April 15, 1999 72

8

For more details on how to setup the JSDT HTTP implementation to work

through firewall, see the section in the JSDT Release Notes.

8.4 LRMP
The lrmp implementation uses the LRMP (light-weight reliable multicast

protocol) package from Inria to send packets of information between the

collaborating JSDT applications.

When supplying the <server> portion of a JSDT Session or Client URL, you

must use a multicast address. For example:
jsdt://224.1.2.4:6666/lrmp/Session/stockSession

8.4.1 Limitations
• Cannot handle Data messages greater than 1 Kbyte on all Channels.

• No unreliable Channels.

• Data priorities are ignored.

8.4.2 Registry Usage

The lrmp Registry needs to be on the same multicast address as the <server>
address you use in your JSDT Session URL. In other words, using the Session

URL above, you need to have started the lrmp Registry with:

% java com.sun.media.jsdt.lrmp.Registry -address 224.1.2.4

If you have two Sessions which have two different URL’s, ie:

jsdt://224.1.2.4:5555/lrmp/Session/session1
jsdt://224.1.2.5:6666/lrmp/Session/session2

then you will need to start up two Registrys, ie:

% java com.sun.media.jsdt.lrmp.Registry -address 224.1.2.4
% java com.sun.media.jsdt.lrmp.Registry -address 224.1.2.5

If you are using the RegistryFactory.startRegistry() method to start the

Registry, then you can change the default Registry address with the

JSDTObject.registryAddress variable (see Section 8.6.6, “registryAddress“).
73 Java Shared Data Toolkit User Guide—April 15, 1999

8

8.4.3 Trouble-shooting

The LRMP version of JSDT requires you to have downloaded LRMP from:

 http://webcanal.inria.fr/lrmp/index.html

and to have added the LRMP lrmp.jar file to your CLASSPATH.

If you are running on a Windows platform, then your PATH environment

variable needs to include the Java class directory.

Make sure that you are starting the LRMP version of the JSDT Registry, (see

Section 8.4.2, “Registry Usage“ for more information).

You also need to make sure you are using multicast addresses when starting

your JSDT applications. For example, the whiteboard example server

application should be started with something like:

 java examples.whiteboard.WhiteBoardServer
 -server 224.1.2.3 -port 4466 -type lrmp

and the whiteboard example user application should be started with:

 java examples.whiteboard.WhiteBoardUser
-width -height 350 -server 224.1.2.3 -port 4466 -type lrmp

8.5 RMI
The rmi implementation uses the RMI (remote method invocation) package, to

communicate between the collaboration JSDT applications.

8.5.1 Limitations
• No unreliable Channels.

• Data priorities are ignored.

8.6 Configurable Options
The following variables are available to allow you to adjust the way each

implementation operates. Add the given line of code to your JSDT application.

For each option, an indication is given for which implementations it is used.
Implementations—April 15, 1999 74

8

8.6.1 giveTime

[all]
com.sun.media.jsdt.impl.JSDTObject.giveTime = 10000;

This indicates the period in time (in milliseconds), that a Token.give operation

will be give to complete. If the Token has not been successfully given during

this period, it’s ownership will revert to the original giver, and it will no longer

be in the TokenEvent.GIVEN state. By default, this value is set to 15000 (15

seconds).

8.6.2 httpTunnelPort

[http]
com.sun.media.jsdt.impl.JSDTObject.httpTunnelPort = 8080;

The port number of the web server which is running a CGI script or a Java

Servlet, that will “tunnel” HTTP request through a firewall from proxies to the

server, and back. By default, this value is set to 80.

8.6.3 maxQueueSize

[http, lrmp, socket]
com.sun.media.jsdt.impl.JSDTObject.maxQueueSize = 30;

This defines the maximum number of incoming messages a connection will

store, before it waits for the queue to be emptied. By default, this value is set to

15.

8.6.4 maxThreadPoolSize

[http, lrmp, socket]
com.sun.media.jsdt.impl.JSDTObject.maxThreadPoolSize = 15;

This defines the maximum number of threads that will be used to handle

incoming Data received over Channels. By default, this value is set to 5.

8.6.5 pingPeriod

[http]
com.sun.media.jsdt.impl.JSDTObject.pingPeriod = 250;
75 Java Shared Data Toolkit User Guide—April 15, 1999

8

This defines the period (in milliseconds) used by each JSDT application to ping

for any asynchronous messages that might be queued for that connection. By

default, this value is set to 500.

8.6.6 registryAddress

[lrmp]
com.sun.media.jsdt.impl.JSDTObject.registryAddress = 224.2.4.5;

The multicast address that the Registry should run on (see Section 8.4.2,

“Registry Usage“). By default, this is 224.1.2.3.

8.6.7 registryPort

[all]
com.sun.media.jsdt.impl.JSDTObject.registryPort = 8000;

The port number that the Registry should run on. By default this is 4561.

8.6.8 registryTime

[all]
com.sun.media.jsdt.impl.JSDTObject.registryTime = 30;

This defines the period (in seconds) that the RegistryFactory.startRegistry

method will wait for the Registry to start. If it hasn’t started during this period,

then a NoRegistryException exception is thrown. By default, this value is set to

60.

8.6.9 showMessage

[all]
com.sun.media.jsdt.impl.JSDTObject.showMessage = true;

By default, all debugging and error messages that occur during the running of

a JSDT application are suppressed. Setting the showMessage variable to true
allows you to write these messages to stderr.

8.6.10 showStack

[all]
Implementations—April 15, 1999 76

8

com.sun.media.jsdt.impl.JSDTObject.showStack = true;

When a debugging or error message occurs, if showStack is set to true, then a

stack trace of this thread will be written to stderr. By default, this variable is set

to false.

8.6.11 socketFactoryClass

[socket]
com.sun.media.jsdt.impl.JSDTObject.socketFactoryClass =
 “com.sun.media.jsdt.socket.SSLSocketFactory”;

This allows you to specify an alternate factory class for creating sockets. This

class file must implement the com.sun.media.jsdt.socket.JSDTSockFactory

interface, which defines two methods:

 Socket
 createSocket(String address, int port)
 throws IOException, UnknownHostException;

 ServerSocket
 createServerSocket(int port) throws IOException;

By default, TCP sockets are used in conjunction with the

com.sun.media.jsdt.socket.TCPSocketFactory class.

8.6.12 SSLCipher

[socket]
com.sun.media.jsdt.impl.JSDTObject.SSLCipher =
 "SSL_RSA_WITH_3DES_EDE_CBC_SHA”;

If you are using SSL sockets (see Section 8.6.11, “socketFactoryClass“), then this

variable defines the cipher that should be used by the various sockets for their

connections. The default cipher is “SSL_DH_anon_WITH_RC4_128_MD5”.

8.6.13 timeoutPeriod

[http, lrmp, socket]
com.sun.media.jsdt.impl.JSDTObject.timeoutPeriod = 3000;

When a message is sent from a JSDT proxy to a JSDT server, then if a reply is

not received within timeoutPeriod milliseconds, then a TimedOutException will
77 Java Shared Data Toolkit User Guide—April 15, 1999

8

occur. This variable allows you to adjust that timeout period. The default value

is 15000 milliseconds (15 seconds).

8.6.14 TTL

[lrmp]
com.sun.media.jsdt.impl.JSDTObject.TTL = 127;

The time-to-live for LRMP packets. The TTL is used to limit the scope of the

session and should be between 1 and 255. More meaningfully, TTL 15: the same

site; TTL 63: the same region; TTL 127: world-wide. The default value is 15.
Implementations—April 15, 1999 78

8

79 Java Shared Data Toolkit User Guide—April 15, 1999

JavaSoft

2550 Garcia Avenue

Mountain View, CA 94043

408-343-1400

For U.S. Sales Office locations, call:

800 821-4643

In California:

800 821-4642

Australia: (02) 844 5000

Belgium: 32 2 716 7911

Canada: 416 477-6745

Finland: +358-0-525561

France: (1) 30 67 50 00

Germany: (0) 89-46 00 8-0

Hong Kong: 852 802 4188

Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 415 688-9464

The Netherlands: 033 501234

New Zealand: (04) 499 2344

Nordic Countries: +46 (0) 8 623 90 00

PRC: 861-849 2828

Singapore: 224 3388

Spain: (91) 5551648

Switzerland: (1) 825 71 11

Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

415 960-1300

Intercontinental Sales: 415 688-9000

	Java Shared Data Toolkit User Guide
	This is a toolkit defined to support highly interactive, collaborative applications written in th...
	Version 1.5 April 15, 1999
	Please send technical comments on this user guide to:
	jsdt-interest@sun.com
	Rich Burridge, Staff Engineer
	Sun Microsystems, Inc.

	Contents
	1. Introduction 8
	1.1 What Is Collaborative Computing? 8
	1.2 Abstract 11
	1.3 Overview 11

	2. Getting Started 12
	2.1 Overview 12
	2.2 URLString 12
	2.3 Registry 14
	2.3.1 RegistryFactory 14

	2.4 Client 16
	2.5 ClientFactory 17
	2.6 Session 19
	2.6.1 SessionFactory 19
	2.6.2 Joining a Session 22
	2.6.3 Closing a Session 22

	2.7 Channel 22
	2.8 Channel Consumer 25
	2.9 Data 26
	2.9.1 Sending Data 27
	2.9.2 Receiving Data 28
	2.9.3 Sending a Java Object 30

	2.10 ByteArray 31
	2.11 Token 34
	2.12 Manageable Objects 38
	2.12.1 Getting a Manageable Objects Name 38
	2.12.2 Who’s Joined a Manageable Object 38
	2.12.3 Joining a Manageable Object 39
	2.12.4 Leaving a Manageable Object 39
	2.12.5 Customizing a Listeners Events. 40
	2.12.6 Customizing a Managers Events. 40
	2.12.7 Destroying a Manageable Object 41
	2.12.8 Inviting and Expelling Clients 41

	3. Managers 44
	3.1 Overview 44
	3.2 Authentication 44
	3.3 Session Manager 46
	3.4 Channel Manager 48
	3.5 ByteArray Manager 49
	3.6 Token Manager 50

	4. Listeners 52
	4.1 Overview 52
	4.2 Session Listener 53
	4.3 Channel Listener 53
	4.4 ByteArray Listener 54
	4.5 Token Listener 54
	4.6 Client Listener 55

	5. Events 56
	5.1 Overview 56
	5.2 Session Event 56
	5.3 Channel Event 57
	5.4 ByteArray Event 58
	5.5 Token Event 58
	5.6 Client Event 59

	6. Adaptors 60
	6.1 Overview 60
	6.2 Handling ByteArray Value Changes 60
	6.3 Giving a Token 61

	7. Exceptions 66
	7.1 Overview 66
	7.2 Exception Types 66

	8. Implementations 70
	8.1 Overview 70
	8.2 Socket 70
	8.2.1 Limitations 70
	8.2.2 SSL Support 71

	8.3 HTTP 71
	8.3.1 Limitations 71
	8.3.2 Working through firewalls 72

	8.4 LRMP 73
	8.4.1 Limitations 73
	8.4.2 Registry Usage 73
	8.4.3 Trouble-shooting 74

	8.5 RMI 74
	8.5.1 Limitations 74

	8.6 Configurable Options 74
	8.6.1 giveTime 75
	8.6.2 httpTunnelPort 75
	8.6.3 maxQueueSize 75
	8.6.4 maxThreadPoolSize 75
	8.6.5 pingPeriod 75
	8.6.6 registryAddress 76
	8.6.7 registryPort 76
	8.6.8 registryTime 76
	8.6.9 showMessage 76
	8.6.10 showStack 76
	8.6.11 socketFactoryClass 77
	8.6.12 SSLCipher 77
	8.6.13 timeoutPeriod 77
	8.6.14 TTL 78
	Introduction
	1

	1.1 What Is Collaborative Computing?
	1.2 Abstract
	1.3 Overview
	Getting Started
	2

	2.1 Overview
	2.2 URLString
	2.3 Registry
	2.3.1 RegistryFactory

	2.4 Client
	2.5 ClientFactory
	2.6 Session
	2.6.1 SessionFactory
	2.6.2 Joining a Session
	2.6.3 Closing a Session

	2.7 Channel
	2.8 Channel Consumer
	2.9 Data
	2.9.1 Sending Data
	2.9.2 Receiving Data
	2.9.3 Sending a Java Object

	2.10 ByteArray
	2.11 Token
	2.12 Manageable Objects
	2.12.1 Getting a Manageable Objects Name
	2.12.2 Who’s Joined a Manageable Object
	2.12.3 Joining a Manageable Object
	2.12.4 Leaving a Manageable Object
	2.12.5 Customizing a Listeners Events.
	2.12.6 Customizing a Managers Events.
	2.12.7 Destroying a Manageable Object
	2.12.8 Inviting and Expelling Clients
	Managers
	3

	3.1 Overview
	3.2 Authentication
	3.3 Session Manager
	3.4 Channel Manager
	3.5 ByteArray Manager
	3.6 Token Manager
	Listeners
	4

	4.1 Overview
	4.2 Session Listener
	4.3 Channel Listener
	4.4 ByteArray Listener
	4.5 Token Listener
	4.6 Client Listener
	Events
	5

	5.1 Overview
	5.1 Session Event
	5.1 Channel Event
	5.1 ByteArray Event
	5.1 Token Event
	5.1 Client Event
	Adaptors
	6

	6.1 Overview
	6.1 Handling ByteArray Value Changes
	6.1 Giving a Token
	Exceptions
	7

	7.1 Overview
	7.2 Exception Types
	Implementations
	8

	8.1 Overview
	8.2 Socket
	8.2.1 Limitations
	8.2.2 SSL Support

	8.3 HTTP
	8.3.1 Limitations
	8.3.2 Working through firewalls

	8.4 LRMP
	8.4.1 Limitations
	8.4.2 Registry Usage
	8.4.3 Trouble-shooting

	8.5 RMI
	8.5.1 Limitations

	8.6 Configurable Options
	8.6.1 giveTime
	8.6.2 httpTunnelPort
	8.6.3 maxQueueSize
	8.6.4 maxThreadPoolSize
	8.6.5 pingPeriod
	8.6.6 registryAddress
	8.6.7 registryPort
	8.6.8 registryTime
	8.6.9 showMessage
	8.6.10 showStack
	8.6.11 socketFactoryClass
	8.6.12 SSLCipher
	8.6.13 timeoutPeriod
	8.6.14 TTL

