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Transition-based syntactic parsing

Transition-based syntactic parsing system maintains a
stack (S), which contains partially-constructed outputs
and a queue (Q), which contains ordered incoming words.

At each step, a transition action is taken to consume the
input and construct the output. When the syntactic tree
is completed, a sequence of actions (A) is achieved.

Input sentence -> sequence of actions -> syntactic tree



Transition-based syntactic parsing

v Constituent parsing
– Constituent trees are represented as the sequences

of transition actions. e.g. the top-down system
(Dyer et al., 2016).

v Dependency parsing
– Dependency trees are represented as the sequences

of transition actions. e.g. the arc-standard
system (Nivre et al., 2007).



Transition-based syntactic parsing

v Constituent parsing

– Inputs:
Tom likes red tomatoes .
– Actions:
NT(S) Shift NT(VP) Shift NT(NP) Shift Shift
Reduce Reduce Shift Reduce



Transition-based syntactic parsing

v Dependency parsing

– Inputs:
Tom likes red tomatoes .
– Actions:
Shift Shift Left-Arc(nsubj) Shift Shift Left-Arc(amod)
Right-Arc(dobj) Shift Right-Arc(punct)



Transition-based syntactic parsing

v Generalization

– A general sequence-to-sequence task

– Given a sentence x1, x2, …, xn , the goal is to
generate a corresponding sequence of actions a1,
a2, …, am.

– Possible for other transition-based systems



Motivation

v Encoder-decoder neural networks
– Encoder --- recurrent neural networks to represent

sentences
– decoder --- recurrent neural networks to output

what we want in sequence.

– Simple structures

encoder decoder



Motivation

v Neural machine translation with encoder-
decoder neural networks (Bahdanau et al.,
2015)

– The encoder is used to represent source-side
sentences (e.g. in French), the decoder outputs
target-side sentences (e.g. in English)

– The successful seminal work by applying the
attention mechanism over the encoder



Motivation

v Constituent parsing with encoder-decoder
neural networks (Vinyals et al., 2015)

– Achieves relatively low accuracies on standard
benchmarks by translating a sentence into its
bracketed representation

Tom likes red tomatoes

(S Tom (VP likes (NP red …) …

attention



Models

v Simple encoder-decoder structure
– translating a sentences into its sequence of

transition actions

v Difference from Vinyals et al., (2015)
– Instead of bracketed representation, the model

outputs sequences of transition actions.
– Instead of vanilla attention over the whole sentence,

stack-queue sensitive attention mechanism is
applied.

– Same encoder, different decoder



Models

v Stack-queue decoder

We use separate attention models over encoder
hidden states to represent the stack and the queue,
respectively.

Note: x is the representation of a word, consisting of the tuned word embedding, the tuned
POS embedding and the fixed pretrained word embedding.



Models

v Difference from Dyer et al., (2015 & 2016)

– Instead of stack-LSTM, bidirectional LSTM is used for
encoder.

– Instead of changing the representation of the
sentence, our system implicitly models stack
information by using stack-queue sensitive attention
mechanism.



Transition-based syntactic parsing

v Training

Our models are trained to minimize a cross-entropy
loss objective with l2-regularization term, defined by



Experiments

v Data

– WSJ sections of PTB for constituent parsing and
dependency parsing, where sections 02-21 are taken
for training, section 22 for development and section
23 for test data.

– For dependency parsing, the constituent trees are
convert to Stanford dependencies (v3.3.0).

– Pretrained word embeddings are trained on the AFP
portion of English Gigaword.



Experiments

v Dependency parsing
– Development results of dependency parsing

Vanilla decoder: vanilla attention
SQ decoder: stack-queue sensitive encoder

+ average pooling: use pooling to represent stack and queue, respectively.
+ attention: use stack-queue sensitive attention (our model).



Experiments

v Dependency parsing
– Final results



Experiments

v Dependency parsing
– Analysis

The composition function is applied in the stack-LSTM parser to explicitly
represent the partially-constructed trees, ensuring high precision of short
sentences. On the other hand, errors are also fully represented and accumulated
in long sentences.



Experiments

While the error distributions of the two parsers on
the fine-grained metrics are slightly different, the
main trends of the two models are consistent,
which shows that our model can learn similar
information compared to the parser of Dyer et al.
(2015), without explicitly modeling stack
information.

v Dependency parsing
– Analysis



Experiments
v Constituent parsing

– Final results

+ rerank / + semi-rerank: we use sampling techniques to get 100
candidate from our models, and use Choe and Charniak (2016) as our
reranker.



Experiments
v Attention visualization



Contribution
– Study the effectiveness of the highly simple

encoder-decoder structure for transition-based
parsing.

– Without changing encoder-decoder structure,
propose a stack-queue sensitive attention
mechanism for transition-based parsing.

• Great improvement compared to vanilla decoder (Vinyals
et al. 2015)

• Simpler and more general for different grammar
formalisms without redesigning the stack representation,
compared to stack-LSTM (Dyer et al., 2015 & 2016)



Contribution

– The proposed system achieves comparable results.

– Great potential by regarding the parsing task as
translating a sentence into a shift-reduce action
sequence, so that NMT techniques can be directly
applied.
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Q & A

The codes are public on
https://github.com/LeonCrashCode/Encoder-Decoder-
Parser.


