

Splitting Complex English Sentences

John Lee	City University of Hong Kong
J. Buddhika K.	Hong Kong Applied Science and
Pathirage Don	Technology Research Institute

- Introduction
- Previous work
- Approach
- Evaluation

Introduction

- Text simplification
 - Goal: to re-write a sentence to reduce its complexity, but preserve the meaning

- Various types of text simplification
 - Lexical simplification
 - Syntactic simplification
 - Content deletion / insertion

Introduction

- This paper addresses one kind of syntactic simplification
 - Goal: to split a complex sentence (S) into two simpler sentences (S1, S2)

S	The man, carrying numerous books, entered the room.	Input: Complex sentence	
S1		Output: Two	
S2	He was carrying numerous books.	simpler sentences	

Introduction

- Sentence splitting involves two steps:
 - Detect the text span that should be taken out of the complex sentence
 - Re-generate the two simpler sentences
 - Sentence re-ordering
 - Pronouns or referring expressions
 - Tense changes

We focus on the first step

- Introduction
- Previous work
- Approach
- Evaluation

Previous work

Many previous studies on syntactic
 simplification (Chandrasekar et al., 2016; Siddharthan, 2002; Inui et al., 2003; Belder & Moens, 2010; Bott et al., 2012; Saggion et al., 2015; etc.)

- Typical approach: parse sentence, then apply rules to transform specific constructs
 - E.g., rules for apposition, relative clauses,
 subordination, coordination, etc. (Aluisio et al., 2008;
 Siddharthan and Angrosh, 2014)

Previous work

- Evaluation methodology
 - Task-based, e.g., reading comprehension (Angrosh et al., 2014)
 - Readability metrics, BLEU (Aluisio et al., 2010; Narayan and Gardent, 2014)
 - Human ratings (Stajner et al., 2016)

 Limitation: no clear indication of what goes wrong in the simplification process

- Introduction
- Previous work
- Approach
- Evaluation

Data

- We created a evaluation dataset
 - Derived from aligned sentences from Wikipedia and Simple Wikipedia (Kauchak, 2013)
 - 23,715 one-to-two sentence alignments
 - 1,071 <S,S1,S2> sentence triplets manually annotated to serve as test set
 - Remainder serves as training set

```
<S><ref>The man</ref> <split type="participial">, carrying numerous
books,</split> entered the room.
<S1><ref1>The man</ref1> entered the room.</S1>
<S2><ref2>He</ref2> was carrying numerous books.</S</pre>
```


Baseline

- Manually-crafted tree patterns
 - Patterns for six different syntactic constructs
 - Breadth-first search for these patterns in parse tree

Coordination	Adjectival clause			Participial phrase	
conj / ccomp V* V*	N*	N*	VBN/VBG		
Appositive phrase	N* N*/V* Subordination			Punctuation/Parataxis	
N* N*	V* V*	V* VBN	1 V *	parataxis V*	

Decision Tree

- Baseline yields high recall but low precision
 - Always split a sentence when it has one of the syntactic constructs
- Decision tree approach
 - Determine whether each candidate text span should be split or not
 - Features: POS, child/parent/sibling POS, comma, determiner, text span length

- Introduction
- Previous work
- Approach
- Evaluation

Result

 Decision tree system outperforms baseline in precision, but has lower recall

Construct	Baseline	Proposed	
	Precision / Recall	Precision / Recall	
Coordination	0.31 / 0.84	0.61 / 0.80	
Adjectival clause	0.29 / 0.97	0.59 / 0.79	
Participial phrase	0.33 / 0.90	0.56 / 0.58	
Appositive phrase	0.21 / 0.91	0.36 / 0.56	
Subordination	0.39 / 0.84	0.70 / 0.74	
Parataxis	0.78 / 0.99	0.92 / 0.95	
Overall	0.34 / 0.88	0.63 / 0.72	

Conclusion

- We investigated the task of automatic complex sentence splitting
 - A subtask of syntactic simplification
 - Decision tree outperforms a baseline based only on matching syntactic patterns
 - We reported the first large-scale, detailed evaluation on this task with a new dataset