

L1-L2 Parallel Dependency Treebank as Learner Corpus

> John Lee, Keying Li, Herman Leung

City University of Hong Kong

- Introduction
- Parallel treebanks
- Learner corpora
- L1-L2 parallel treebank as learner corpus

 Case study

- A learner corpus consists of text written by language learners
 - Typically indicates learner errors with:
 - Error tags
 - Target hypothesis

- Learner corpora facilitate retrieval of large number of samples for quantitative studies
 - Error Analysis
 - What are the most common error categories in learner text?
 - Contrastive Interlanguage Analysis
 - What words or structures are overused or underused by learners, compared to native speakers?

- We propose annotating a learner corpus as an *L1-L2 parallel treebank*
 - L2 treebank
 - Learner sentences, with syntactic trees
 - L1 treebank
 - Target hypotheses, with syntactic trees
 - Word alignment between L1 and L2 trees

- This paper discusses:
 - Advantages of using a parallel L1-L2 treebank to analyze learner language
 - More flexible retrieval of different error types
 - Case study on word-order errors
 - Evaluation on accuracy in retrieving different types of word-order errors
 - Based on a small parallel Chinese L1-L2 treebank

- Introduction
- Parallel Treebanks
- Learner Corpora
- L1-L2 parallel treebank as learner corpus

 Case study

Parallel treebanks

- Parallel treebanks increasingly available
 - Czech-English, English-French, English-German, English-German-Swedish, English-Swedish-Turkish (Cmejrek et al. 2003; Hansen-Schirra et al., 2006; Ahrenberg, 2007;

Hearne and Way, 2006, Megyesi et al., 2010)

(Cmejrek et al., 2003; Volk & Marek, 2011)

Parallel treebanks

- Parallel treebanks support quantitative comparison between languages
 - Translation correspondence
 - Typological features
 - Copula construction, predicate structure, etc. (Sulger et al., 2013)

• An *L1-L2 parallel treebank* can similarly support comparison between a language and an interlanguage

Parallel treebanks

- Treebanks have been constructed for learner English
 - Dependency treebanks (Berzak et al., 2016; Ragheb and Dickinson, 2014)
 - Constituent treebanks (Nagata and Sakaguchi, 2016)
 - Not yet any L1-L2 parallel treebank

[Berzak et al., 2016]

- Introduction
- Parallel Treebanks
- Learner Corpora
- L1-L2 parallel treebank as learner corpus

 Case study

Error tags

• NUCLE error tagset (Dahlmeier et al., 2013)

Verb tense	Noun number
Verb modal	Noun possessive
Missing verb	Pronoun form
Verb form	Pronoun reference
Subject-verb agreement	Wrong collocation
Article or determiner	Acronyms
Runons	Word form
Dangling modifiers	Tone
Parallelism	Subordinate clause
Fragment	

Word-level:

action verb (v), auxiliary (*aux*), stative verb (vs), noun (n), pronoun (*pron*), conjunction (*conj*), preposition (p), numeral (*num*), demonstrative (*det*), measure word (*cl*), sentential particle (*sp*), aspectual particle (*asp*), adverb (*adv*), structural particle (*de*), question word (*que*), plural suffix (*plural*)

Grammatical Function-level:

subject (*sub*), object (*obj*), noun phrase (*np*), verb phrase (vp), preposition phrase (*pp*), modifier (*mod*), time expression (*time*), place expression (*loc*), transitivity (*tran*), separable structure (*vo*), [numeral /determiner+measure] phrase (*dm*),

Sentence Pattern-level: complex noun clause (rel), 把 (ba), 被 (bei), 讓 (rang), 是 (shi), 有 (you), other patterns (pattern)

Mixture: formation (form), ambiguity of syntactic or meaning (sentence)

Error tags

 Test of Chinese as a Foreign Language Learner COrpus (Lee et al., 2016)

Limitations

• Error tags impose a fixed error typology

- Limited corpus re-use
 - Difficult to develop a robust and generalpurpose error typology
 - Cannot cover "all" error categories of potential interest
 - Researchers need to re-annotate for their own studies

Limitations

- Limited corpus interoperability
 - Granularity of error tagset varies among corpora
 - E.g., Learner English: NUCLE (27 tags) vs NICT Japanese Learner English Corpus (46 tags) vs Cambridge Learner Corpus (80 tags)
 - To leverage multiple corpora, one would need to map error categories from one corpus to another
 - Difficult because of differences in definition

- Introduction
- Parallel Treebanks
- Learner Corpora
- L1-L2 parallel treebank as learner corpus
 - Case study

Tree search for error retrieval

 Many error categories can be expressed as a search query on POS tags

L2	Furniture	look	good	
POS tag	NN	VE	3	JJ
L1	Furniture	looks	good	

Search on aligned VB-VBZ words can retrieve subject-verb agreement errors

Tree search for error retrieval

- But POS tags alone are often not sufficient
 - E.g., change in POS might be a consequence of other errors

L2	Furnitures	look		good		
POS tag	NNS	\ \	/B	J	JJ	
						Not a subject-verb
L1	Furniture	looks		good		agreement error, but
POS tag	NN	VE	ΒZ	J	IJ	noun number error

Tree search for error retrieval

 More precise search is possible with dependency relations

- Introduction
- Parallel Treebanks
- Learner Corpora
- L1-L2 parallel treebank
 - Case study

Chinese word-order errors

- Types of Chinese word-order errors
 - 3 categories proposed by Ko (1997)
 - Time/Place Words
 - Modification Structures
 - Topic-comment Relations
 - 27 categories proposed by Jiang (2009)
 - Current Chinese learner corpora do not provide this granularity
 - Impossible to distinguish between these categories

Data

- Dev set: 58 sentence pairs from Jiang (2009)
 - Manually developed 30 parse tree patterns for 10 error categories
 - Annotated sentence with Universal Dependencies
 - Based on scheme proposed by Lee et al. (2017)

• Test set: 114 sentences

25

Results

Error type	Precision	Recall
Time expressions	0.92	0.92
Modifiers + V	0.50	0.50
Action Series	0.65	0.85
Locative expressions	0.91	0.77
Subsidiary Relations	1.00	0.80
Beneficiary	1.00	0.56
Modifiers + N	0.89	1.00
DE position	1.00	0.38
Topic-comment	0.83	0.71
Question	1.00	0.50

Conclusion

- An L1-L2 parallel treebank offers some advantages as learner corpus
 - Corpus re-use
 - Corpus interoperability

 A case study on Chinese word-order errors demonstrates its potential