L1-L2 Parallel Dependency Treebank as Learner Corpus

John Lee, Keying Li, Herman Leung

City University of Hong Kong
Outline

• Introduction
• Parallel treebanks
• Learner corpora
• L1-L2 parallel treebank as learner corpus
 – Case study
Introduction

• A learner corpus consists of text written by language learners
 – Typically indicates learner errors with:
 • Error tags
 • Target hypothesis

He <MV> null | is </MV> happy.

Error tag: M(issing) V(erb)

Target hypothesis: Corrected version of sentence
Introduction

• Learner corpora facilitate retrieval of large number of samples for quantitative studies
 – Error Analysis
 • What are the most common error categories in learner text?
 – Contrastive Interlanguage Analysis
 • What words or structures are overused or underused by learners, compared to native speakers?
Introduction

• We propose annotating a learner corpus as an $L1$-$L2$ parallel treebank
 – $L2$ treebank
 • Learner sentences, with syntactic trees
 – $L1$ treebank
 • Target hypotheses, with syntactic trees
 – Word alignment between $L1$ and $L2$ trees
Learner Chinese sentence (L2)

'I wake up at 7 o'clock'

Target hypothesis (L1)
Introduction

• This paper discusses:

 – Advantages of using a parallel L1-L2 treebank to analyze learner language
 • More flexible retrieval of different error types

 – Case study on word-order errors
 • Evaluation on accuracy in retrieving different types of word-order errors
 • Based on a small parallel Chinese L1-L2 treebank
Outline

• Introduction

• **Parallel Treebanks**

• Learner Corpora

• L1-L2 parallel treebank as learner corpus
 – Case study
Parallel treebanks

• Parallel treebanks increasingly available
 – Czech-English, English-French, English-German, English-German-Swedish, English-Swedish-Turkish (Cmejrek et al. 2003; Hansen-Schirra et al., 2006; Ahrenberg, 2007; Hearne and Way, 2006, Megyesi et al., 2010)

(Cmejrek et al., 2003; Volk & Marek, 2011)
Parallel treebanks

- Parallel treebanks support quantitative comparison between languages
 - Translation correspondence
 - Typological features
 - Copula construction, predicate structure, etc. (Sulger et al., 2013)

- An *L1-L2 parallel treebank* can similarly support comparison between a language and an interlanguage
Parallel treebanks

- Treebanks have been constructed for learner English
 - Dependency treebanks (Berzak et al., 2016; Ragheb and Dickinson, 2014)
 - Constituent treebanks (Nagata and Sakaguchi, 2016)
 - Not yet any L1-L2 parallel treebank

[Berzak et al., 2016]
Outline

• Introduction
• Parallel Treebanks
• **Learner Corpora**
• L1-L2 parallel treebank as learner corpus
 – Case study
Error tags

- **NUCLE error tagset** *(Dahlmeier et al., 2013)*

<table>
<thead>
<tr>
<th>Verb tense</th>
<th>Noun number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb modal</td>
<td>Noun possessive</td>
</tr>
<tr>
<td>Missing verb</td>
<td>Pronoun form</td>
</tr>
<tr>
<td>Verb form</td>
<td>Pronoun reference</td>
</tr>
<tr>
<td>Subject-verb agreement</td>
<td>Wrong collocation</td>
</tr>
<tr>
<td>Article or determiner</td>
<td>Acronyms</td>
</tr>
<tr>
<td>Runons</td>
<td>Word form</td>
</tr>
<tr>
<td>Dangling modifiers</td>
<td>Tone</td>
</tr>
<tr>
<td>Parallelism</td>
<td>Subordinate clause</td>
</tr>
<tr>
<td>Fragment</td>
<td></td>
</tr>
</tbody>
</table>
Word-level: action verb (v), auxiliary (aux), stative verb (vs), noun (n), pronoun (pron), conjunction (conf), preposition (p), numeral (num), demonstrative (det), measure word (cl), sentential particle (sp), aspectual particle (asp), adverb (adv), structural particle (de), question word (que), plural suffix (plural)

Grammatical Function-level:
subject (sub), object (obj), noun phrase (np), verb phrase (vp), preposition phrase (pp), modifier (mod), time expression (time), place expression (loc), transitivity (tran), separable structure (vo), [numeral /determiner+measure] phrase (dm),

Sentence Pattern-level:
complex noun clause (rel), 把 (ba), 被 (bei), 讓 (rang), 是 (shi), 有 (you), other patterns (pattern)

Mixture:
formation (form), ambiguity of syntactic or meaning (sentence)

Error tags

• Test of Chinese as a Foreign Language Learner corpus (Lee et al., 2016)
Limitations

• Error tags impose a fixed error typology

• Limited corpus re-use
 – Difficult to develop a robust and general-purpose error typology
 – Cannot cover “all” error categories of potential interest
 – Researchers need to re-annotate for their own studies
Limitations

• Limited corpus interoperability
 – Granularity of error tagset varies among corpora
 • E.g., Learner English: NUCLE (27 tags) vs NICT Japanese Learner English Corpus (46 tags) vs Cambridge Learner Corpus (80 tags)
 – To leverage multiple corpora, one would need to map error categories from one corpus to another
 • Difficult because of differences in definition
Outline

• Introduction
• Parallel Treebanks
• Learner Corpora
• L1-L2 parallel treebank as learner corpus
 – Case study
Tree search for error retrieval

- Many error categories can be expressed as a search query on POS tags

<table>
<thead>
<tr>
<th>L2</th>
<th>Furniture</th>
<th>look</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS tag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN</td>
<td>VB</td>
<td>JJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1</th>
<th>Furniture</th>
<th>looks</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS tag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN</td>
<td>VBZ</td>
<td>JJ</td>
</tr>
</tbody>
</table>

Search on aligned VB-VBZ words can retrieve subject-verb agreement errors
Tree search for error retrieval

- But POS tags alone are often not sufficient
 - E.g., change in POS might be a consequence of other errors

<table>
<thead>
<tr>
<th>L2</th>
<th>Furnitures</th>
<th>look</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS tag</td>
<td>NNS</td>
<td>VB</td>
<td>JJ</td>
</tr>
</tbody>
</table>

L1

<table>
<thead>
<tr>
<th>L1</th>
<th>Furniture</th>
<th>looks</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS tag</td>
<td>NN</td>
<td>VBZ</td>
<td>JJ</td>
</tr>
</tbody>
</table>

Not a subject-verb agreement error, but a noun number error
Tree search for error retrieval

- More precise search is possible with dependency relations

Both verbs have the same noun subject

The noun subject is not changed

Verb changed from base form (VB) to present third-person singular (VBZ)
Outline

• Introduction
• Parallel Treebanks
• Learner Corpora
• L1-L2 parallel treebank
 – Case study
Chinese word-order errors

- Types of Chinese word-order errors
 - 3 categories proposed by Ko (1997)
 - Time/Place Words
 - Modification Structures
 - Topic-comment Relations
 - 27 categories proposed by Jiang (2009)
 - Current Chinese learner corpora do not provide this granularity
 - Impossible to distinguish between these categories
Data

• Dev set: 58 sentence pairs from Jiang (2009)
 – Manually developed 30 parse tree patterns for 10 error categories
 – Annotated sentence with Universal Dependencies
 • Based on scheme proposed by Lee et al. (2017)

• Test set: 114 sentences
(a) Modifiers + V (Adverb + V)
L2: 我去第一次中國...
wo qu/VERB diyici/NOUN zhongguo
‘I’ ‘go’ ‘first time’ ‘China’
L1: 我第一次去中國...
wo diyici/NOUN qu/VERB zhongguo
‘I’ ‘first time’ ‘go’ ‘China’
“I go for the first time to China ...”

(b) Action Series (LE position)
L2: 我們去了參觀故宮
ownen qu/VERB le canguan/VERB gugong
‘we’ ‘go’ LE ‘visit’ ’Forbidden City’
L1: 我們去參觀了故宮
nownen qu/VERB canguan/VERB le gugong
‘we’ ‘go’ ‘visit’ LE ’Forbidden City’
“We went to visit the Forbidden City”

(c) Locative Expressions (Location + V)
L2: 你做什麼在這裡
ni zuo/VERB shenme zai/ADP zheli/NOUN
‘you’ ‘do’ ‘what’ ‘at’ ‘here’
L1: 你在這裡做什麼
ni zai/ADP zheli/NOUN zuo/VERB shenme
‘you’ ‘at’ ‘here’ ‘do’ ‘what’
“What are you doing here?”
Results

<table>
<thead>
<tr>
<th>Error type</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time expressions</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Modifiers + V</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Action Series</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>Locative expressions</td>
<td>0.91</td>
<td>0.77</td>
</tr>
<tr>
<td>Subsidiary Relations</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>Beneficiary</td>
<td>1.00</td>
<td>0.56</td>
</tr>
<tr>
<td>Modifiers + N</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>DE position</td>
<td>1.00</td>
<td>0.38</td>
</tr>
<tr>
<td>Topic-comment</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>Question</td>
<td>1.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Conclusion

• An L1-L2 parallel treebank offers some advantages as learner corpus
 – Corpus re-use
 – Corpus interoperability

• A case study on Chinese word-order errors demonstrates its potential