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Previous work and motivations

* State-of-the-art approaches to PoS tagging = machine-learning-based approaches relying on
annotated corpora for training

« Statistical approaches
* Neural architectures — cf. (Plank et al. 2016)
* Lexical information helps to improve tagging accuracy

* Different types of lexical information

« External lexicons as source of constraints or additional features in statistical approaches
(constraints: Kim et al. 1999, Haji¢ 2000; features: Chrupata et al. 2008, Goldberg et al. 2009, Denis and Sagot
2009, 2012)

 (word-level) word embeddings extracted from large volumes of text and/or learned while training neural
architectures such as LSTMs (Ling et al. 2015, Ballesteros et al. 2015, Plank et al. 2016)

* Character-level (word) embeddings also capture lexical information, in a more “compositiona
been shown to help dealing with low-frequency/unknown words (Plank et al. 2016)

* Motivation: how do these different types of lexical information can contribute to tagging
accuracy?
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way, and have

« How can we take into account external lexicons in a neural architecture?
» Do external lexicons provide new, useful information w.r.t. word embeddings and character-level embeddings?



Architecture




Starting point: Plank et al.’s (2016) LSTM
architecture
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Integrating lexical information
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Data: corpora, word embeddings

» Corpora: Universal Dependencies dataset, v. 1.3 (Nivre et al. 2016)

* Covers several dozen typologically diverse languages with annotated corpora
of various sizes

* Pre-computed word embeddings: following Plank et al. (2016), we
used Polyglot pre-computed embeddings (Al-Rfou et al. 2013)

* Not available for all languages



Data: lexicons

 Two main sources

1. Apertium and Giellatekno projects
* For languages for which only a morphological analyser (vs. lexicon) is available:
» we used the corresponding monolingual part of OPUS’s OpenSubtitles2016

» we tokenised it, extracted the 1 million most frequent tokens, and retrieved all
their morphological analyses to create a “lexicon”

 Rule-based conversion to UD PoS / UD Morph. Feats.
* 2 |lexicon variants: “coarse” (tag = UD PoS) + “full” (tag = UD PoS + UD Morph. Feats.)
2. Other existing lexicon, in particular Alexina lexicons (Sagot 2010), using only
main categories, with a few language-specific adaptations
* We only used the “best” lexicon for each language

 Selected based on tagging accuracy on dev sets

e The “best” lexicon is almost never a “full” variant



Experimental setup

* Implementation: Extension of Plank et al.’s (2016) freely available
source code (bilty)

 standard configuration
* 1 bi-LSTM layer
character-level embeddings size = 100
word embedding size = 64 (same as Polyglot embeddings)
no multitask learning
20 iterations for training

* Experimental settings

* with vs. without initialisation of the word embedding layer with pre-computed
Polyglot word embeddings (when available)

* with vs. without character-level embeddings

e with vs. without external lexical information
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Overall results

* Consistent improvements when using information from an external
lexicon

* Greatest improvements = without character-level embeddings
Macro-average gain: +2.56, vs. +0.57 when also using character-based
embeddings

* When also using pre-computed Polyglot embeddings, improvements are
smaller
Macro-average gain: +0.21 (restricted to languages with Polyglot embeddings)



Influence of corpus size

Accuracy gain when using an external lexicon as a function of the
training corpus size e WoOrd
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Influence of type/token ratio

Accuracy gain when using an external lexicon as a function of the
token/type ratio
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Influence of unknown word rate

Accuracy gain w.r.t. tokens in the test set unseen in the training set
but known to the lexicon
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A surprising result

Accuracy gain on all unknown words vs. on unknown
words known to the corpus (configuration with character-
based and Polyglot-initialised embeddings)
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Conclusion
and perspectives




Conclusion and perspectives

* Lexical information from morphological lexicons is helpful for neural tagging

 Information provided by character-level embeddings and word embeddings is only
partially the same

e Future work

* Compare learning curves for the different neural configuration and non-neural
(statistical) taggers

» Preliminary experiments tend to show that a neural tagger does not perform
significantly better on average than a MEMM tagger, provided external lexical
information is used

* Better understand what information is really helpful in the external lexicon, and
what information is redundant with the different types of embeddings

» Character-level embeddings capture regular morphology, for instance






