EPE 2017: The Trento–Gothenburg Opinion Extraction System

Richard Johansson
richard.johansson@gu.se

EPE shared task
September 20, 2017
the third EPE downstream task

- the third task is extraction of opinion expressions
- we use the MPQA annotation model [Wiebe et al., 2005] "The report is full of absurdities", Xirao-Nima said.
- the downstream application is the Trento–Gothenburg system [Johansson and Moschitti, 2013]
types of expressions annotated in MPQA

- direct-subjective expressions (DSEs):
 Paolo *likes* Pisa

- expressive-subjective elements (ESEs):
 Pisa is a *wonderful* city

- objective speech events (OSEs):
 Paolo *says* that Pisa is widely appreciated
polarity annotation

- **direct-subjective expressions (DSEs):**

 Paolo *likes* Pisa [*positive*]

- **expressive-subjective elements (DSEs):**

 Pisa is a *wonderful* city [*positive*]

- **objective speech events (OSEs):**

 Paolo *says* that Pisa is widely appreciated
opinion holders

» explicitly mentioned:

 Paolo likes Pisa

» writer:

 Pisa is a wonderful city

» implicit:

 Pisa is widely appreciated
definition of the task

- extract expressions and label them (DSE, ESE, OSE)
- determine the polarity of DSEs and ESEs
- find the holders of all expressions, including writer and implicit
scoring the participating systems

- precision, recall, and F-score for all three subtasks
- we use a lenient scoring approach:
 - gold standard: The report is full of absurdities
 - system output: The report is full of absurdities
 - gives $P = 1.0$, $R = 0.58$
overview of the system by Johansson and Moschitti (2013)
how does the linguistic analysis affect the modules?

- expression extraction: tags, lemmas
- polarity classification: tags, lemmas
- holder extraction: tags, lemmas, dependencies
- reranking: tags, lemmas, dependencies
results: high-level trends

- holder extraction results show much more variation than the other two subtasks
we evaluated the holder extraction module using gold-standard opinion expressions
this is the scenario we used in the final overall ranking
honorable mentions

<table>
<thead>
<tr>
<th>Team</th>
<th>Rank</th>
<th>Accuracy</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szeged</td>
<td>1</td>
<td>66.3</td>
<td>post-processed CoNLL-08</td>
</tr>
<tr>
<td>Stanford–Paris</td>
<td>6</td>
<td>65.2</td>
<td>UD v1 enhanced</td>
</tr>
<tr>
<td>Paris–Stanford</td>
<td>3</td>
<td>64.3</td>
<td>UD v1 enhanced</td>
</tr>
</tbody>
</table>
conclusions: some tentative observations

- how much does the choice of dependency style matter?
 - hard to say: most systems are UD-based, but much variation inside this group
 - not many datapoints for other dependency styles
- how well do parsers producing “semantic” representations perform?
 - not very well! mean F-score 58.8, vs 62.9 for the “syntactic” representations
 - but the features in the downstream system were never designed for this type of representation