EPE 2017:

The Sherlock Negation Resolution Downstream Application

Emanuele Lapponi[♣] and Stephan Oepen ^{♣♠} and Lilja Øvrelid^{♣♠}

University of Oslo, Department of Informatics

Center for Advanced Study at the Norwegian Academy of Science and Letters {emanuel | oe | liljao } @ifi.uio.no

September 20, 2017

Negation resolution (NR)

- ► For a given sentence, find negation cues and the words they affect.
- ▶ 2012 *SEM Shared Task (Morante & Blanco, 2012) is one of the most notable NR-related effort in recent years:
 - ► A non-biomedical, human-annotated corpus for negation
 - ► Empirical NR results from 8 competing teams
 - ► Sherlock predecessor (Lapponi et al., 2012) ranked 1st in the open and 2nd in the closed track

The Conan Doyle Data (CD)

- ► A collection of fiction works by Sir Arthur Conan Doyle
 - ► Training: 3644 sentences drawn from *The Hound of the Baskervilles*
 - ► Development: 787 sentences taken from Wisteria Lodge
 - ► Held-out: 1089 sentences from *The Cardboard Box* and *The Red Circle*
- Pre-processed with sentence boundaries, tokens, lemmas, pos-tags and constituency trees

Negation Annotations

- 1. Since {we have been so} $\langle un \rangle \{ \underline{fortunate} \text{ as to miss him} \} [...]$
- 2. If $\{\text{he was}\}\$ in the hospital and yet $\langle \text{not}\rangle\$ $\{\text{on the staff}\}\$ he could only have been a house-surgeon or a house-physician: little more than a senior student.
- ► Cues (angle brackets):(multiple) tokens or sub-tokens
- ► **Scopes** (braces): extend to full propositions, can be discontinuous
- ► **Events** (underlined): in-scope events or states, if factual

System Description

- Assumes classified cues
- ► NR as a classical sequence labeling problem, 'flattening' scopes
- ► Fine-grained label set
- Wapiti (Lavergne, Cappé, & Yvon, 2010), an open-source implementation of a Conditional Random Field (CRF) classifier

System Description

- ► Features include different n-gram combinations of token, lemma, pos-tags and dependency relations
- Cue-aware features include surface and dependency distance, as well shortest dependency path from a cue
- ► Adapted to be robust to a wider range of dependency graphs
 - full set of dependency relations
 - dependency path, distance: assumes graphs with re-entrancies and unconnected nodes, records only one of several shortest paths

Annotation Projection

- ▶ EPE submissions come in different tokenization flavors
- Original CD annotations are token-oriented and CoNLL-like
- ► We developed a separate 'projection' step that
 - ightharpoonup (1) converts the gold-standard negation annotations into character spans
 - ► (2) projects them onto a dependency graph provided by a participating parser
 - (3) serializes the enriched graph in the token-oriented back to the *SEM 2012 format
- ► I.e. a 'personalized' version of the negation annotations for each individual segmentation

Results

	UiO_2	Elming et al.	Stanford–Paris 6	Szeged 0	Paris–Stanford 7
ST	85.75	_	88.57	86.64	88.19
SM	80.00	81.27	80.43	78.42	80.14
ET	80.55	76.19	76.55	75.47	71.77
FN	66.41	67.94	65.37	62.15	60.48

- ► Token-level F₁ for in-scope tokens (ST) and event tokens (ET)
- ► Scope-level F₁ with (FN) and without (SM) events

Results

- ► Keep in mind that
 - Sherlock was designed around a specific set of linguistic annotations
 - ► Very possible bias
- ► For each submission, we really should
 - Experiment with adding/discarding features for the CRF
 - ► Design new features!

Conclusions

- ► Sherlock, Negation Resolution for Extrinsic Parser Evaluation
 - ► *SEM 2012 annotation projected to arbitrary segmentations
 - ► System updated to be robust to more dependency representations

Future work

- ► Sift through the tea leaves: systematic qualitative and quantitative error analysis of EPE submissions
- ► Tune (and design) features and heuristics around a sub-set of the EPE submissions

Thank you!

https://github.com/ltgoslo/sherlock

- Lapponi, E., Velldal, E., Øvrelid, L., & Read, J. (2012). UiO2: sequence-labeling negation using dependency features. In *Proceedings of the 1st Joint Conference on Lexical and Computational Semantics* (p. 319–327). Montréal, Canada.
- Lavergne, T., Cappé, O., & Yvon, F. (2010, July). Practical very large scale CRFs. In *Proceedings of the 48th Meeting of the Association for Computational Linguistics* (p. 504–513). Uppsala, Sweden.
- Morante, R., & Blanco, E. (2012, June). *SEM 2012 Shared Task.

 Resolving the scope and focus of negation. In *Proceedings of the 1st Joint Conference on Lexical and Computational Semantics* (p. 265–274). Montréal, Canada.