
Semgrex-Plus: a tool for automatic
dependency-graph rewriting

Fabio Tamburini
FICLIT - University of Bologna

Email: fabio.tamburini@unibo.it

Outline First Last Prev Next J



1. Introduction

I We developed the Semgrex-Plus tool an automatic procedure to convert dependency
treebanks into different formats.

I It allows for the definition of formal rules for rewriting dependencies and token tags
as well as an algorithm for treebank rewriting able to avoid rule interference during
the conversion process.

I We extended the behaviour of the Stanford Semgrex tool adding some new func-
tionalities for automatic dependency-graph rewriting useful for treebank mainte-
nance, revision and conversion, producing a new publicly available tool.

Outline First Last Prev Next J



2. The Stanford Semgrex Search Language
I it represents nodes as a (non-recursive) attribute-value matrix;

I it uses regular expressions for subsets of attribute values;

I it specifies a complex set of relations between nodes:

Symbol Meaning
{}=1 Generic node without any attribute with ID=‘1’

{tag:W}=2 Generic node with attribute tag=‘W’ and with ID=‘2’
A <reln=X B A is the dep. of a rel. reln (with ID=‘X’) with B
A >reln=X B A is the gov. of a rel. reln (with ID=‘X’) with B

...

Semgrex search pattern Retrieved subgraphs

{A} >X
(
{B} >Y {C}

)
{A} >X {B} >Y {C}

{D} >Z
(
{A} >X {B} >Y {C}

)
... See previous example to build all retrieved subgraphs.

Outline First Last Prev Next J



3. Semgrex-Plus

I We defined pairs of patterns: the first is used to search into the treebank for the
required subgraphs, and the second is used to specify how the retrieved subsgraphs
have to be rewritten.

I For example the pattern pair
“{tag:det}=1 >arg=A {tag:noun}=2” →

“{tag:ART}=1 <DET=A {tag:NN}=2”,
what we called a ‘Semgrex-Plus rule’, changes the direction of the dependency and,
at the same time, changes the words tags and relation label.

I The starting ‘search’ pattern and final ‘rewrite’ pattern have to contain the same
number of nodes and dependency edges. Node and relation naming in Semgrex has
been the fundamental trick to introduce such extension.

Outline First Last Prev Next J



4. Semgrex-Plus: Rule Application Procedure
We decouple the search and rewrite operations for the rule application defining a set of
new rewriting operations on a general dependency treebank:

I DEL REL(graphID, depID, headID): deletes a dependency edge;

I INS REL(graphID, depID, headID, label): inserts a new labelled edge;

I REN TAG(graphID, nodeID, tag): replace the tag of a specific graph node.

The conversion task has been implemented as a three-steps process:

1. each Semgrex-Plus rule is always applied to the original treebank producing a set
of matching subgraphs that have to be rewritten;

2. for each match, a set of specific operations for rewriting the subgraph corresponding
to the processed matching are generated and stored;

3. this set is sorted by graphID, duplicates removed and every operation is applied
graph by graph: first DEL REL, then INS REL and REN TAG.

Outline First Last Prev Next J



5. Semgrex-Plus: Rule Overlap/Interference Checking
The tool first identifies which edges in the search pattern are modified by the rewrite
pattern of each rule. An edge is modified if:

I the relation is modified;

I one of its nodes is modified by an attribute change.

Then, if the intersection of modified edges is not empty and

a) the two search patterns completely match, then we have a full overlap between rules
and this mark a problem.

b) the two search patterns do not completely match, then we got a partial overlap
between rules and this is a potential problem.

Outline First Last Prev Next J


	Introduction
	The Stanford Semgrex Search Language
	Semgrex-Plus
	Semgrex-Plus: Rule Application Procedure
	Semgrex-Plus: Rule Overlap/Interference Checking

