

Enhanced UD dependencies with Neutralized Diathesis Alternations

Marie Candito¹, Bruno Guillaume², Guy Perrier³ and Djamé Seddah⁴

¹Univ Paris Diderot, ²Loria, ³Univ de Lorraine, ⁴Univ Paris Sorbonne

Introduction

- UD scheme favors dependencies between content words
 - better cross-linguistic generalization
 - more semantic-oriented dependencies

- Yet, UD dependencies remain syntactic trees
 - Pb for well-known syntactic/semantic mismatches

Syntactic/Semantic mismatches

Argument sharing

- control verbs, Right-node raising, coordination...
- 1 syntactic argument = no semantic argument
 - e.g. impersonal construction

FR: il est arrivé 3 personnes it is arrived 3 people « 3 people arrived »

• 2 syntactic arguments = 1 semantic argument

• e.g. raising verbs, predicative complements

FR: Marie a trouvé Anna fatiguée

Marie has found Anna tired « Marie found that Anna was tired »

Beyond dependency trees

- Many proposals towards predicate-argument structures
 - Stanford dependencies (de Marneffe and Manning 08)
 - Graph banks
 - cf. in-depth analysis of 4 English graph-banks by Kuhlman & Oepen (CL, 2016)
 - the Semeval 2014 shared task on « broad coverage semantic dependency parsing » (Oepen et al. 14)
 - « Deep syntax »
 - Spanish: MTT deep trees (Ballesteros et al. 16)
 - French: Deep syntactic graphs (Candito et al. 14)
 - Tectogrammatical structures in Prague Dependency treebank ...

More or less semantics

- In these proposals, e.g. labels are more or less semantic-oriented
 - syntactic labels
 - numbered arguments
 - arg0, arg1, arg2 ...
 - MTT : deep syntactic arguments I, II, III ...
 - semantic roles
 - patient, addressee, beneficiary ...
 - as in tectogrammatical structures in Prague DT

Enhanced UD graphs

- « Enhanced dependencies »
 - Enhanced / enhanced++ for English (Schuster & Manning, 16)
 - proposed as optional in UD v2.0
 - available for a few languages (Russian, Finnish)

Enhanced UD graphs

- 5 enhancements
 - subj. of infinitives in control/raising constructions
 Paul seems to run: run —nsubj—> Paul
 - propagation of conjuncts
 - antecedent of relative pronouns
 - markers as suffixes in labels

went -obl:into-> house

• null nodes for elided predicates

Mary wants to buy a book and Jenny N1 N2 a CD

This work

Yet another proposal for enhanced UD: « Enhanced-diat »

- that neutralizes syntactic alternations
- Implemented and evaluated on French

Enhanced-diat

- Enhanced-diat graphs remain mostly syntactic
 - in particular, we keep **UD syntactic labels**
 - as starting point for various kinds of semantic representations

Enhanced-diat

- 2 enhancements over enhanced UD:
 - Add even more argumental edges, either
 - some fully determined by syntax:
 - control nouns, adj, some participles, gerunds
 - other cases not fully determined but most frequent
 - Neutralize syntactic alternations
 - recover canonical subcat frame

More argumental edges: Example: noun-modifying participle

More argumental edges: Example: infinitive adverbial clauses

- When main verb is active, with non expl subject
- subject of infinitive = subject of main verb
- in most cases (83% on Sequoia corpus)

Il mangera avant de jouer

He will-eat before to play

« He will eat before playing »

• counter-example:

D'autres photos ont subi des retouches pour **accentuer** le drame

Other photos have undergone modifications to **accentuate** the drama

Neutralizing syntactic alternations

- recover « canonical » grammatical functions
 - the function you would get in active personal voice
- cheap way to limit linking diversity
 - e.g. proved useful for FrameNet parsing (Michalon et al. 16)
- massive for passive
- other cases (see paper):
 - impersonal, causative, mediopassive

Neutralizing syntactic alternations

- Note:
 - nsubj:pass / csubj:pass not enough to recover all arguments of passive (obl / obl:agent)
 - UD choice to distinguish functions according to POS of dependent (nsubj/csubj, obj/xcomp...) augments linking diversity

Syntactic alternation normalization for English ditransitives

• Take canonical subcat :

They(nsubj) gave him(iobj) orders(obj)

Obtaining enhanced-diat graphs for French

- 2 teams, 2 graph-rewriting systems
 - GREW (Guillaume et al. 12) : 157 rules
 - OGRE (Ribeyre et al. 12) : 115 rules
 - building on rules written for producing deep-sequoia (Candito et al. 14; Perrier et al. 14)
- rules written supposing gold surface tree
- mix of
 - purely deterministic cases (e.g. control verbs)
 - cases previously analyzed as « almost deterministic »
 - cf. previous example of infinitive adverbial clauses

Gold corpus for evaluation

- We produced gold graphs for 200 sentences
 - 100 from UD_French
 - 100 from UD_French-Sequoia
 - bias: obtained through adjudication of the 2 rulebased systems outputs

Quantitative assessment of enhancements

- **4804** edges in the 200 sentence gold corpus
- 956 are argumental dependents of verbs
 - approximated using core argument labels (nsubj,csubj,obj,iobj,ccomp,xcomp) + obl label
- edges added (set N): 18.9 %
- edges with neutralized label (set A) : **13,9 %**
- N U A represent **26.7 %** of arguments of verbs

Evaluation in 2 modes

- **PA+** : with manual pre-annotation of certain phenomena
 - expletive « il »
 - reflexive clitic « se » status (for mediopassive)
 - canonical subjects in causative constructions
 - agents of passives (by-phrases : obl:agent)
- **PA-** : no pre-annotation, handling by rules known to be approximative

Evaluation in 2 modes

		PA-		PA+	
		SEQ_{test}	$\mathrm{UD}_\mathrm{test}$	SEQ_{test}	$\mathrm{UD}_\mathrm{test}$
All	OGRE	98.81	99.17	99.46	99.40
edges	GREW	99.44	99.54	99.69	99.66
$N \cup A$	OGRE	86.20	89.89	92.51	91.71
edges	GREW	93.42	94.31	95.77	95.39

Table 1: Evaluation of rule-based systems producing enhanced graphs: F-measures computed on all edges (top) or only on edges in N or A (bottom);

Conclusion

- Production of high quality enhanced UD graphs proved feasible for French
 - a little better with pre-annotation of a few not-sodeterministic phenomena
- Quality: accurate enough to serve as pseudo-gold for data-driven methods
- **Impact**: when considering arguments of verbs:
 - 19% are enhanced edges
 - 14% have a label modified by neutralizing syntactic alternation

Conclusion (cont)

- Other languages ?
 - Romance
 - English:
 - diathesis alternations used for some experiments for the EPE shared task
 - Paris / Stanford system (Schuster et al. 17)

Thank you! Questions?

data / rules available at https://github.com/bguil/Depling2017