Enhanced UD dependencies with Neutralized Diathesis Alternations

Marie Candito1, Bruno Guillaume2,
Guy Perrier3 and Djamé Seddah4

1Univ Paris Diderot, 2Loria,
3Univ de Lorraine, 4Univ Paris Sorbonne
Introduction

• UD scheme favors dependencies between content words
 • better cross-linguistic generalization
 • more semantic-oriented dependencies

• Yet, UD dependencies remain syntactic trees
 • Pb for well-known syntactic/semantic mismatches
Syntactic/Semantic mismatches

• Argument sharing
 • control verbs, Right-node raising, coordination…

• 1 syntactic argument = no semantic argument
 • e.g. impersonal construction

 FR: *il est arrivé* 3 personnes
 it is arrived 3 people
 « 3 people arrived »

• 2 syntactic arguments = 1 semantic argument
 • e.g. raising verbs, predicative complements

 FR: *Marie a trouvé Anna fatiguée*
 Marie has found Anna tired
 « Marie found that Anna was tired »
Beyond dependency trees

- Many proposals towards predicate-argument structures
 - Stanford dependencies (de Marneffe and Manning 08)
 - Graph banks
 - cf. in-depth analysis of 4 English graph-banks by Kuhlman & Oepen (CL, 2016)
 - the Semeval 2014 shared task on « broad coverage semantic dependency parsing » (Oepen et al. 14)
 - « Deep syntax »
 - Spanish: MTT deep trees (Ballesteros et al. 16)
 - French: Deep syntactic graphs (Candito et al. 14)
 - Tectogrammatical structures in Prague Dependency treebank …
More or less semantics

• In these proposals, e.g. labels are more or less semantic-oriented
 • syntactic labels
 • numbered arguments
 • arg0, arg1, arg2 …
 • MTT: deep syntactic arguments I, II, III …
 • semantic roles
 • patient, addressee, beneficiary …
 • as in tectogrammatical structures in Prague DT
Enhanced UD graphs

- « Enhanced dependencies »
 - Enhanced / enhanced+++ for English (Schuster & Manning, 16)
 - proposed as optional in UD v2.0
 - available for a few languages (Russian, Finnish)
Enhanced UD graphs

• 5 enhancements
 • subj. of infinitives in control/raising constructions
 \[Paul \text{ seems to run: } run \rightarrow nsubj \rightarrow Paul \]
 • propagation of conjuncts
 • antecedent of relative pronouns
 • markers as suffixes in labels
 \[went \rightarrowobl:into\rightarrow house \]
 • null nodes for elided predicates
 \[Mary \text{ wants to buy a book and Jenny N1 N2 a CD} \]
This work

• Yet another proposal for enhanced UD: « Enhanced-diat »
 • that neutralizes syntactic alternations

• Implemented and evaluated on French
Enhanced-diat

- Enhanced-diat graphs remain mostly syntactic
 - in particular, we keep **UD syntactic labels**
 - as starting point for various kinds of semantic representations

```
Syntactic tree

Deep syntactic graph

PAS  AMR  MRS  ...
```
Enhanced-diat

• 2 enhancements over enhanced UD:
 • Add even more argumental edges, either
 • some fully determined by syntax:
 • control nouns, adj, some participles, gerunds
 • other cases not fully determined but most frequent
 • Neutralize syntactic alternations
 • recover canonical subcat frame
More argumental edges:
Example: noun-modifying participle

(a) ceux (étant) apparus en 2001

(b) ceux (ayant été) embauchés en 2007
More argumental edges: Example: infinitive adverbial clauses

- When main verb is active, with non expl subject
- subject of infinitive = subject of main verb
- in most cases (83% on Sequoia corpus)

 Il mangera avant de jouer

 He will-eat before to play

 « *He will eat before playing* »

- counter-example:

 *D’autres photos ont subi des retouches pour **accentuer** le drame*

 *Other photos have undergone modifications to **accentuate** the drama*
Neutralizing syntactic alternations

• recover « canonical » grammatical functions
 • the function you would get in active personal voice

• cheap way to limit linking diversity
 • e.g. proved useful for FrameNet parsing (Michalon et al. 16)

• massive for passive

• other cases (see paper):
 • impersonal, causative, mediopassive
Neutralizing syntactic alternations

• Note:
 • nsubj:pass / csubj:pass not enough to recover all arguments of passive (obl / obl:agent)
 • UD choice to distinguish functions according to POS of dependent (nsubj/csubj, obj/xcomp…) augments linking diversity
Syntactic alternation normalization for English ditransitives

- Take canonical subcat:
 - They\textit{(nsubj)} gave him\textit{(iobj)} orders\textit{(obj)}

\begin{itemize}
 \item (a) He was given orders by them
 \item (b) Orders were given to him
 \item (c) They often give orders to him
\end{itemize}
Obtaining enhanced-diat graphs for French

- 2 teams, 2 graph-rewriting systems
 - GREW (Guillaume et al. 12) : 157 rules
 - OGRE (Ribeyre et al. 12) : 115 rules
 - building on rules written for producing deep-sequoia
 (Candito et al. 14; Perrier et al. 14)

- rules written supposing gold surface tree

- mix of
 - purely deterministic cases (e.g. control verbs)
 - cases previously analyzed as "almost deterministic"
 - cf. previous example of infinitive adverbial clauses
Gold corpus for evaluation

- We produced gold graphs for 200 sentences
 - 100 from UD_French
 - 100 from UD_French-Sequoia
 - bias: obtained through adjudication of the 2 rule-based systems outputs
Quantitative assessment of enhancements

- **4804** edges in the 200 sentence gold corpus
- **956** are argumental dependents of verbs
 - approximated using core argument labels (nsubj,csubj,obj,iobj,ccomp,xcomp) + obl label
- edges added (set N): **18.9 %**
- edges with neutralized label (set A): **13.9 %**
- N U A represent **26.7 %** of arguments of verbs
Evaluation in 2 modes

• **PA+**: with manual pre-annotation of certain phenomena
 • expletive « il »
 • reflexive clitic « se » status (for mediopassive)
 • canonical subjects in causative constructions
 • agents of passives (by-phrases : obl:agent)

• **PA-**: no pre-annotation, handling by rules known to be approximative
Evaluation in 2 modes

<table>
<thead>
<tr>
<th></th>
<th>PA−</th>
<th></th>
<th>PA+</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEQ_{test}</td>
<td>UD_{test}</td>
<td>SEQ_{test}</td>
<td>UD_{test}</td>
</tr>
<tr>
<td>All edges</td>
<td>OGRE</td>
<td>98.81</td>
<td>99.17</td>
<td>99.46</td>
</tr>
<tr>
<td></td>
<td>GREW</td>
<td>99.44</td>
<td>99.54</td>
<td>99.69</td>
</tr>
<tr>
<td>N ∪ A edges</td>
<td>OGRE</td>
<td>86.20</td>
<td>89.89</td>
<td>92.51</td>
</tr>
<tr>
<td></td>
<td>GREW</td>
<td>93.42</td>
<td>94.31</td>
<td>95.77</td>
</tr>
</tbody>
</table>

Table 1: Evaluation of rule-based systems producing enhanced graphs: F-measures computed on all edges (top) or only on edges in N or A (bottom);
Conclusion

- Production of high quality enhanced UD graphs proved feasible for French
 - a little better with pre-annotation of a few not-so-deterministic phenomena

- **Quality**: accurate enough to serve as pseudo-gold for data-driven methods

- **Impact**: when considering arguments of verbs:
 - 19% are enhanced edges
 - 14% have a label modified by neutralizing syntactic alternation
Conclusion (cont)

• Other languages?
 • Romance
 • English:
 • diathesis alternations used for some experiments for the EPE shared task
 • Paris / Stanford system (Schuster et al. 17)
Thank you!

Questions?

data / rules available at https://github.com/bguil/Depling2017